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Abstract 

Purpose: The 4th Industrial Revolution started with the advent of cyber-physical products such 

as medical instruments or autonomous vehicles. Such products require sophisticated methods 

of testing and certification for safe public usage. This is less easy than before. Software, which 

is the predominant system component, is updated and learns new behavior during operations. 

Autonomous Real-time Testing (ART) addresses this problem by testing continuously, even 

during operation. ART is based on the Analytic Hierarchy Process (AHP), for understanding 

users’ needs, and Quality Function Deployment (QFD), used to select relevant test cases. 

Methodology/ Approach: ART relies on combinatory logic for generating test cases, and test 

automation implemented by Kubernetes for executing tests. Since combinatory logic generates 

a potentially unlimited number of new test cases, all valid, a method is needed to select relevant 

test cases by measuring their relevance. Voice of the Customer (VoC), AHP and QFD, as de-

scribed in the international series of standards ISO/IEC 16355, deliver the necessary metrics. 

Findings and Research Limitation: Six Sigma Transfer Functions and QFD yield the criteria 

needed for executing relevant system tests in real-time. The method can be implemented by 

Kubernetes using Digital Twins for hardware in the loop. 

Originality/ Value: The approach combines software metrics, mathematic logic, and big data 

respectively Artificial Intelligence (AI). It was not realistic just a few years ago. Now, thanks 

to Kubernetes and the revolution that has occurred in software technology, it has become the 

key to digitalization of products typical for the 4th Industrial Revolution. Cyber-physical prod-

ucts become testable and can be certified for public, and safe, use. 

Keywords: Autonomous Real-time Testing (ART), Analytical Hierarchy Process (AHP), Qual-

ity Function Deployment (QFD), Software Testing, Certified Cloud Services, User-centric 

Product Development, Certifying Cyber-physical Products, Kubernetes. 

1. Introduction 

Cyber-physical products have initiated the 4th industrial revolution. Steam, electricity, infor-

mation technology did identify the previous three industrial epochs. Hardware no longer is con-

trolled and activated by itself, or human operators, but rather by software. Software controls 



everything: motion, movement, force, energy consumption, orientation, visual recognition, and 

autonomous communication between various intelligent products.  

In this environment, products receive software updates every few weeks, or days, and still are 

expected to run reliably and safely. A major concern is that current testing strategies are not 

capable of assessing systems with software sized around a few hundred thousand of function 

points. Tester do not even measure test size, because functional sizing methods were once de-

signed for predicting cost of developing software, not for testing products. Moreover, today’s 

testing approaches are oriented towards stand-alone products that keep their original behavior 

stable over time. However, with machine learning and interconnection with other devices, this 

is no longer appropriate. 

2. Short Literature Overview 

There is a huge amount of literature about software and system testing; consult the ISO standard 

(ISO/IEC/IEEE 29119-4, 2015) for references; however, most of it, including standard body of 

knowledges, available from the international testing associations, refer to testing all kind of 

features but functionality is just one among many features of a product (ISTQB, 2011). The 

move to agile software development did not change much on testing (ISTQB, 2014). But with 

cyber-physical systems, functionality becomes paramount. Testing relevant functionality is 

something different than testing code because functionality in today’s complex systems often 

originates from the cloud, or from services where code is not available, or irrelevant to a large 

extend because only a small part of the functionality is used for a specific product (Ebert & 

Weyrich, Sep 2019).  

The modern approach to functional testing of cyber-physical systems is model-based (Aerts, et 

al., 2017). This allows to cope with a testing scope not limited by own code. Models can be 

finite state machines (FSMs), modeling the transition from inputs to output, or temporal logic, 

modeling behavior, or state-based models, representing system dynamics (Baldini, 2020). Then, 

testing covers not only execution of test cases, but also their verification (Donzé, et al., 2013). 

However, since we aim at generating new test cases from existing ones, the most attractive 

approach is Combinatory Logic (Engeler, 1995). Engeler has shown how the arrow term model 

of combinatory logic can be used to understand how the brain thinks (Engeler, 2019). For au-

tonomous testing – not only for the automatic execution of tests – something similar seems 

useful, explaining how humans assess what a system does (Fehlmann & Kranich, May 2020). 

For testing medical instruments, this approach is especially promising (Biundo, et al., 2020). 

With combinatory logic applied to test cases, there is combinatorial explosion. Uncontrolled, it 

blasts everything apart. This is where Quality Function Deployment (QFD) and especially 

Saaty’s Analytic Hierarchy Process (AHP) comes in. They allow to automatically select test 

cases that are relevant for the user. Six Sigma Transfer Function (Fehlmann, 2016) perform that 

task. The series of international standards ISO/IEC 16355 (ISO 16355, 2015-2019) explain all 

details. For Six Sigma, consult for instance El-Haik (El-Haik & Shaout, 2010). 

All this is only possible if there is a measurement method that covers both functionality and test 

size. This is also an international standard ISO/IEC (ISO/IEC 19761:2019, 2019). Details and 

sample applications can be found in the COSMIC manual (COSMIC Measurement Practices 

Committee, 2020). COSMIC can be used for modeling both functionality and tests (Abu Talib, 

et al., 2006). 

Technically, these relevant selection of test cases generated by combinatory logic must be exe-

cuted by software in dedicated containers. Kubernetes (The Kubernetes Authors, 2018) is the 

current software technique that allows executing such tests, implemented by Custom Resources 



(The Kubernetes Authors, 2021). When testing cyber-physical systems, hardware in the loop is 

replaced by Digital Twins (KubeEdge, 2021). 

The paper is organized as follows: section 3 explains how Six Sigma Transfer Functions select 

relevant test cases, with reference to two samples; section 4 outlines Autonomous Real-time 

Testing (ART) for non-testers, and section 5 presents some conclusions and suggestions for 

future work. 

3. Six Sigma Transfer Functions 

The Formula that Explains the World has the form 

 𝑨𝒙 = 𝒚 (1) 

where 𝒚 is the profile of what is the goal of undertaking – e.g., meeting customer needs – and 

𝑨 is the system that is expected to achieve that when applied to the technical solution profile 𝒚. 

𝑨 is called a Transfer Function. If the transfer function is linear, or can be linearized, then the 

methods of Linear Algebra are applicable for solving the world formula (Fehlmann, 2003). 

3.1 An Introduction to Transfer Functions  

However, for testing, 𝒙 is the vector profile describing the importance of the test cases for the 

customer, and 𝒚 is the vector profile prioritizing the qualitative or quantitative user needs. The 

transfer function 𝑨 measures the effects of test cases in view of the user stories that represent 

the customer’s needs and values. 

Solving a transfer function means guessing controls that cause a certain response, near enough 

to the observed or desired response. The number of controls needed, and thus the dimensions 

of the system 𝑨 that is supposed to solve the problem, is not known from the beginning. 

Sample transfer functions include, but are not limited to 

➢ Six Sigma DMAIC analysis – searching for the cause of an observed failure. 

➢ Search Engines – searching for URLs that match the search criteria 

➢ Software & Systems Testing – searching for test stories that test user stories (FUR) 

The problem is how to find controls with a profile 𝒙, and an approximation of 𝑨, such that 𝑨𝒙 

is near enough to the goal profile. If 𝑨 is linear, the Eigenvector Method solves such problems. 

The Convergence Gap decides whether the guess is valid or not. 

3.1.1 The Eigenvector Method 

To solve (1) for some unknown 𝑨 and 𝒙, search for transfer functions 𝑨 whose symmetric 

matrix 𝑨𝑨⊺ has eigenvectors 𝒚𝐸 such that 𝒚 ≅ 𝒚𝐸. Consult Fehlmann (Fehlmann, 2016) for 

details. For comparison without bias, we need Profiles, i.e., vectors of Euclidean length one 

(Saaty, 2003); thus, a profile vector 𝒚 fulfils 

 ‖𝒚‖ = √∑𝑦𝑖
2

𝑖=1

𝑖=1

= 1 (2) 

In equation (2) 𝒚 = ⟨𝑦1, 𝑦2, … , 𝑦𝑛⟩ is the profile vector with its vector components, and ‖…‖ 

the Euclidean norm for the length of a vector. To be compliant with ISO/IEC 16355, profile 

vectors are required. Otherwise, comparisons would not be based on a ratio scale, but introduce 

the length of the vector as a bias. 



3.1.2 The Convergence Gap 

Note that 𝑨𝑨⊺(𝒚𝐸) = 𝑨(𝑨⊺(𝒚𝐸)) = 𝑨(𝑨⊺𝒚𝐸). Thus, 𝒙𝑬 = 𝑨⊺𝒚𝐸 is called the Achieved Solution 

Profile, because if 𝒚 ≅ 𝑨(𝒙𝑬) the transfer function 𝑨 and the achieved solution 𝒙𝑬 solve the 

world formula approximatively.  

Let 𝒚′ = 𝑨(𝒙𝑬). The Convergence Gap is defined by the Euclidean norm for the length of the 

vector difference between goal profile and achieved solution profile 

 ‖𝒚 − 𝑨(𝒙𝑬)‖ = ‖𝒚 − 𝒚′‖ = √∑(𝑦𝑖 − 𝑦𝑖
′)2

𝑛

𝑖=1

 (3) 

The convergence gap (3) can be used as a quality metric for the transfer function 𝑨. It tells how 

well 𝑨 solves the problem. Therefore, we call 𝑨𝒙 = 𝒚 the World Formula. 

3.2 Six Sigma and QFD 

Six Sigma has been widely adopted in manufacturing for managing processes and making them 

capable. QFD is linked to product design, management, and continuous improvement. Both 

share the use of transfer functions (“matrices”) to analyze cause and effect, both solve the 

“world formula” 𝑨𝒙 = 𝒚. However, there are some significant differences. 

In Six Sigma, matrix cells contain measurements, whereas QFD relies on experts’ opinions to 

build the matrix. Measuring is among the core capabilities in manufacturing, whereas in many 

QFD domains, measurements are not readily available. In product management, the needs of 

the customers are difficult to measure and to assess (Pietsch, 2015). The customer, when asked, 

will tell you solutions, not needs; in most cases, habits obscure the true needs and expectations. 

The focus on measurements, capable processes and the use of statistical methods are character-

izing Six Sigma, whereas QFD rather focuses on customer needs, and value for the user. How-

ever, getting a valid goal profile is difficult, especially when no customer is available that can 

be questioned, e.g., in product development. 
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Figure 1: Three Transfer Functions are Needed to Test Users’ Values 

An excellent method to get a profile for users’ values is the Analytic Hierarchy Process (AHP). 

It yields the customer value profile for user stories. Agile teams have a variety of methods for 

prioritization; however, a simple prioritization list is not enough. A priority scale is not per se 

a ratio scale. Profiles must get rid of bias introduced by simple linear prioritization. 



User values first transform into functional effectiveness, telling whether functionality is what 

matters for the users’ values, yielding a priority profile to user stories. This profile in turn is 

used to assess relevance of tests in view of users’ values. This constitutes another transfer func-

tion which is called Test Coverage. It effectively measures whether the functionalities defined 

in the user stories is tested.  

The functional effectiveness identifies the data movements used per user story. This traces the 

requirements. Each data movement is associated with a user story. Thus, the test coverage ma-

trix can be calculated automatically, locating each data movement used in a test case and count-

ing it for the respective cell of the test coverage matrix. 

3.3 Measuring Importance and Relevance of Tests 

A key element of cause-effect analysis is importance. How much does a certain control feature 

impact the process outcome? In Six Sigma, a Design of Experiments (DoE) is conducted to 

measure impact by measuring it. In QFD, it is often expert’s opinion, not factual measurement. 

User stories define requirements for functionality, and functionality can be measured. Today’s 

software is very often embedded somewhere in some cyber-physical system and drives its re-

sponse. Thus, when doing QFD for software, we expect measurements rather than expert opin-

ions as coefficients in the cell of a matrix. To some extent, Six Sigma for Software is a mix 

between QFD and Six Sigma. 

A Test Story is a collection of test cases addressing a common business scope. The transfer 

function 𝑨 maps the test story profile 𝒙 onto the user story profile 𝒚 such that the convergence 

gap closes. This transfer function 𝑨 is called Test Coverage and has the form of a linear matrix. 

In Agile, finding the relevant user stories becomes the central part of development work. This 

done, creating a test coverage matrix only requires grouping test cases into test stories. If the 

convergence gap is close to zero, test cases address the responses that users expect. If the con-

vergence gap opens, some test cases that matter for the users are missing, or superfluous.  

3.4 Functional Size and Test Size 

The basic model both for functional size and for test cases is the UML sequence diagram 

(Levesque, et al., 2008), in a simplified variant that we call Data Movement Map.  

Device Data Log
Functional

Process
Sensor Actuator Other App

1.// Move some Data

2.// Move some Data into Other App

3.// Show Data from Other App

4.// Move Data to Actuator

5.// Log Data

 

Figure 2: A Sample Data Movement Map with One Sensor and One Actuator Device 

Although data movement maps can become large, testers can focus on a selection of relevant 

data movements. Here only four objects of interest are displayed and only four out of many 

more data movements. The tester should be able to step through an App by “visiting” every 

object of interest while executing a functional process. Data movement maps implement the 

ISO/IEC 19761 COSMIC functional size measurement method. Sizing an application, or a test 

case, is automatic once you have its data movement map. Size is defined as the number of data 

movements moving unique data groups. A Defect is localized by its respective data movement. 



Now we can define Functional Size, Test Size, Test Intensity and Defect Density:  

➢ Functional Size:  Number of data movements needed to implement functionality 

➢ Test Size:  Number of data movements executed in tests 

➢ Test Intensity:  Total test size divided by total functional size 

➢ Defect Count:  Number of data movements affected by defect detected in a Test Story 

It is obvious that a higher test intensity has significant value for the user of a cyber-physical 

system and that she or he probably is interested in knowing when and how well the systems has 

been tested, or retested. A display incorporating a testing dashboard would be valuable, for 

instance before sitting in an autonomous car. Nevertheless, test intensity is not telling much if 

tests are not relevant for the user. 

3.5 Two Sample Test QFD 

The author’s book (Fehlmann, Jan. 2020, p. 73) contains a sample testing of an Advanced Driv-

ing Assistance System (ADAS) on the top level – microservice architecture – where it might 

look relatively simply. Test intensity is increased by combining functionality, for instance the 

visual recognition of an obstacle with the weather forecast or rain sensors.  

3.5.1 An Advanced Driver Assistance System (ADAS) 

It is assumed that components such as camera app, visual recognition, the lidar and the naviga-

tor work as expected. A Recommender app might use deep learning, or a more conventional 

rule-based engine. The scope of testing is restricted to a data movement map of 37 data move-

ments only, representing the flow of data groups between 12 objects of interest. Figure 3 is the 

test coverage matrix from the respective test stories into user stories. The transfer function, i.e., 

the cells of the matrix, is defined by the number of data movements in each test story that 

pertains to some specific user story. Obviously, a data movement can occur in many test cases, 

belonging to many test stories, and pertaining to more than one user story. Strictly speaking, 

matrices with cell values above nine do not comply with ISO/IEC 16355. However, thanks to 

Saaty’s Ratio Scale (Saaty, 2003), such matrices can be scaled down to the traditional 0...9 

scale. The solutions to the world formula will not be affected. 
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Figure 3: Sample Test Coverage Matrix 

Like when analyzing big data, the measurement of the data movements frequency indicates 

whether test stories cover all user stories in full. The convergence gap measures whether the 



tests fit the goal profile of the user stories, derived from the users’ values. The test coverage 

transfer function yields an ideal solution profile for the relative importance of test stories. Thus, 

irrelevant test stories can be detected and removed. 

Test stories can be enhanced by adding new test cases that incorporate experiences such as 

driving in heavy rain, or snowfall, and still getting valuable advice by the Recommender. ART 

selects these additional test cases according to relevance and prepares them for execution.  

3.5.2 A Complex Trainset 

The second example (Fehlmann, Jan. 2020, p. 103) refers to a trainset for international travel 

that took eight years for commissioning, because tests were not addressing its complexity.  

The starting problem with such complex systems, also called system of systems, is that it is 

unclear which customer needs are dominant and which are less important across all subsystems. 

The Analytic Hierarchy Process (AHP) answers this question. It allows building a hierarchy 

for the priorities across all components. However, combining the test coverage matrices for the 

individual components results in a big matrix where all sub-quadrants are empty except those 

riding on the diagonal. Each sub-quadrant describes the component tests for one of the many 

system components, such as traction, door controls, train control, terminology, and many more. 

Thus, a method is needed to fill in test cases in the empty quadrants, ideally by combining 

existing test stories with user stories form other components. Since there are so many compo-

nents, this must occur automatically, using an AI application based on QFD. This challenge 

calls for Autonomous Real-time Testing (ART). 

4. Autonomous Real-time Testing 

Tests executed when a cyber-physical product is shipped are not adequate for ensuring safe 

operations. Software updates, undetected defects in sensors, actuators, or added components – 

such as a compromised smartphone – might change behavior. Such change is detectable by 

ART. In turn, complex systems often are not tested thoroughly because they are simply too big 

for traditional testing approaches. Only components are tested. Bug detection is left to some 

trial phase where it is checked for the first time whether all subsystems work smoothly together. 

Such checks are not tests. Subsystems often do not even use the same language because their 

design and inceptions lay decennials apart. ART allows to detect such terminology glitches and 

produces the missing test cases linking behavior of different components to each other. 

Autonomous Real-time Testing (ART) means that tests run 

➢ Anytime 

➢ Anywhere 

➢ In a limited timeslot 

➢ Individually  

Test cases must be relevant to users’ needs, with respect to users’ individual way of using the 

cyber-physical system. Test data are being captured from logging activities of sensors and ac-

tuators. 

4.1 The Three Steps Needed for Preparing Art Plus the One Step Needed for Execution 

ART requires three steps for preparation of test cases, and one fourth step for preparing execu-

tion. Tests are executed with Digital Twins (El Saddik, 2018), not with hardware in the loop. 

1. Measure functional size and test size with ISO/IEC 19761 COSMIC; 

2. Use combinatory algebra to generate test cases for test stories; 

3. Use transfer functions for test coverage to select test cases that matter for the user; 

4. Execute tests by digital twins. 



The framework for Continuous Integration. Delivery, and Deployment (CI/CD) is extended by 

an overlaying activity: ART generates test cases that continuously test software-intense sys-

tems, funneled through transfer functions that enforce user values as a selection principle for 

new test cases. This starts during and in parallel to the CI/CD activities but extends to the full 

product lifetime. Test results are kept for future learning and improvement. 

With Kubernetes, all test instances run in virtual machines, including the generation of test 

cases using combinatorial logic, and the ART evaluator. ART does not happen in some staging 

environment; it happens in the real operational environment. This makes a big difference if 

relevant parts of your system under tests are executing in the cloud. For this, whatever happens 

to the cyber-physical system and is captured by sensors, or managed by actuators, is collected 

as history data, and used for enhancing ART test cases. Tests run in the individual user’s system, 

or at least by exactly the software that is used there, not on a staging system, and with individual 

users’ data. 

Autonomous Real-time Testing
Test Cases

ART

Evaluator
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Deploy

Operate

Sanitize Analyze

User Values

 

Figure 4: Continuous Integration, Deployment, and Delivery with ART Continuous Testing 

The method how to combine test cases is described in (Fehlmann, 2016, p. 319) and (Fehlmann, 

Jan. 2020, p. 30). The base set ℒ consists of predicates specifying data groups according to 

ISO/OEC 19761. The power set 𝒢(ℒ) is the set constructed as follows:  

Recursive Definition: 

➢ ℒ ⊂ 𝒢(ℒ)  

➢ Let 𝑎1, … , 𝑎𝑛 and 𝑏 be elements of  𝒢(ℒ). Then the Arrow Term  

 {𝑎1, … , 𝑎𝑛} → 𝑏 (4) 

is also an element of  𝒢(ℒ).  

Let 𝑀,𝑁 ∈ 𝒢(ℒ). Then application of 𝑀 to 𝑁 is defined by 

 𝑀 • 𝑁 = {𝑎|∃𝑏𝑖 → 𝑎 ∈ 𝑀,  𝑏𝑖 ⊂ 𝑁} (5) 

Equation (5) allows to generate as many test cases as needed, keeping its history of successful 

execution. Furthermore, it describes tests of tests, e.g., test strategies. 



4.2 The Problem with Combinatory Explosion 

This combinatorial explosion creates a problem with the “Real-time” part of ART. Test cases 

must be executed in limited time. Thus, selecting relevant test cases out of the huge number of 

possible test case combinations requires the additional step 3 in the above list (section 4.1). 

The test coverage transfer function linking test stories to user stories is the method for choice 

for selecting relevant test cases. Only those test cases that keep the convergence gap small 

enough are chosen and added to the test suite. Thus, we can limit the total test execution time 

to some reasonable, finite value and still provide maximum value for the user. 

This usage of the transfer function combines aspects from QFD and Six Sigma. Clearly it is 

QFD that guides the requirements tracing done for assessing functional effectiveness; this is a 

standard practice in QFD, see Schockert (Schockert, 2017) and together with Herzwurm 

(Schockert & Herzwurm, 2017). However, the test coverage matrix that relies on the QFD for 

tracing requirements is pure Six Sigma, because ethe test coverage matrix is now measured, not 

only assessed by requirement, or testing experts. 

4.3 Model-based Testing 

The implementation method or the code of the software under test is not needed for ART. An-

alyze user needs instead – use the AHP or use VoC (Mazur, 2014). Draw a data movement map 

to identify the functionality that matters for the user. The layer of functionality that is being 

tested is freely selectable and can include the behavior of Neural Networks and Support Vector 

Machines that otherwise are not executing calculations and algorithms. AI must be constantly 

tested before allowed it impacting humanity. 

Thus, testing a model instead of code has gained popularity recently. However, it should be 

noted that selecting a model is far from straightforward. The international standard ISO/IEC 

14143 (ISO/IEC 14143-1, 2007) is probably simply not understood well enough. This standard 

defines which granularity is needed when modeling functionality of software. When selecting 

a model, the user view is essential. Functional size depends on the selected viewpoint; obviously 

because functionality is not a universal concept but always dependent from where it starts. For 

instance, when assessing the size of a software system, nobody wants to include the functional 

size of the hard disk supporting the operating of software. But the hard disk also is a cyber-

physical system; it is no longer a tape, recording bits sequentially. It has a functional size that 

is non-negligible, but from a technical viewpoint only. 

Therefore, the user point of view is paramount for testing, whatever size or complexity the 

systems exhibit. It is therefore hard to understand how testing has ever been thought sensible 

without adopting ISO/IEC 16355. Sure, it is always possible to adopt a holistic position and 

believe that assumptions can replace facts based on sound knowledge. But then it is belief not 

science. 

4.4 Selecting Relevant Test Cases 

The selection process for additional test cases, generated using combinatory logic, requires 

searching a large set of valid leaves of the search tree using a hash that evaluates the newly 

generated candidate. The hash is the convergence gap (3). New test cases are added to the test 

suite only if they make the convergence gap smaller. This search process is quite tedious and 

requires significant computing effort when automated. It is not immediately clear which test 

cases lead to a smaller convergence gap. It might be just a try-and-error algorithm.  

There are a few ideas how to speed up the selection of relevant test cases. The most promising 

is to use linear algebra to identify those cells in the matrix that should contribute more, or less, 

for closing the convergence gap. Sensitivity analysis could serve as heuristics, indicating where 



in the matrix to generate new candidates, and whether the newly generated candidate is prom-

ising. This has been investigated by the authors (Fehlmann & Kranich, 2021). However, this is 

not easy because when adding, or deleting, a test case from the test suite affects more than just 

one cell in the test coverage matrix. Each addition or deletion of a test case has side effects that 

are difficult to predict, because each test case is associated with a data movement map with a 

size usually larger than one.  

Nevertheless, skilled QFD moderators do such things in every QFD workshop. They seem to 

have a sensory for detecting promising spots in a linear matrix. Sometimes they call it “reading 

the matrix”, but usually they cannot explain clearly what that means exactly. It seems human 

brains use some guidance to successfully identify where to improve a process and its transfer 

function. Thus, such sensitiveness can be trained, and chances are, that they can even be trained 

to a Support Vector Machine (SVM) (Pupale, 2018). In general, such AI machines can be 

trained to exhibit similar behavioral skills like human experts. This would allow to fully autom-

atize ART. 

4.5 Is Full Automation Needed for ART? 

Maybe full automation is not needed. If ISO/IEC 14143 and ISO/IEC 19761 are used to cor-

rectly identify user’ viewpoints, and AHP to cut complex problems in suitable components, 

human expertise is probably fast enough, much cheaper and more reliable than AI automation. 

Experts – in this case both for QFD and the domain under test – can “read the matrix” and 

identify test stories that need more emphasis. By adding test cases to some specific test story, 

for instance by variating test data, some test stories add weight where it affects the convergence 

gap favorably. 

Since typically data movements belong to different user stories, adding a test case to a test story, 

without changing the underlying data movement map, might cause adverse effect. Test cases 

can contain data movements that spread over several user stories. Sometimes it looks more 

promising to connect test stories with new user stories by adding dedicated test cases. Creating 

new test cases within existing test stories needs expertise with the business domain. 

If this fails also, it is always possible to add new test stories, or delete existing test stories when 

they seem obsolete. Then, new columns are added or deleted in the test coverage matrix. This 

is again manual work, but it can be supported by AI, and domain expertise is crucial. 

Thus, full automation is possible, but not needed immediately. To start with ART, finding a 

QFD expert might be good enough. However, the 4th industrial revolution is not yet at its end, 

and cyber-physical systems might grow to sizes currently not yet known. The clue is that rele-

vant test cases should refer to relevant user’s viewpoints and thus need not to grow into dimen-

sions that cannot be handled neither by humans nor by machines. 

5. Conclusions 

Tests must be ongoing and continuously because learning systems keep changing. Cyber-phys-

ical systems, systems that communicate with each other cannot be tested or certified before 

release. Continuous testing requires digital twins, emulating hardware in the loop. 

ART is a new concept that addresses the needs for building confidence in cyber-physical prod-

ucts. Metrics for functionality, for test size and test intensity build confidence and replace to a 

large extend the role that metrics like horsepower had delivered for traditional mechanical prod-

ucts of the past century. AHP and QFD, and all the tools mentioned in the international series 

of standards ISO/IEC 16355 are paramount for ART. It is not enough to produce more test cases 

than the competition. It is much more important to understand the values of users of cyber-

physical products. Only then ART delivers a process that authorities can certify as sufficiently 



well guaranteeing safety, privacy, and overall security. But without such a certified testing pro-

cess, following ISO/IEC 14143, 19761, and 16355, cyber-physical products will not be able to 

replace traditional mechanical, human-controlled products. 
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