
A General Model for Representing Knowledge  

Intelligent Systems using Concepts 

Dr. Thomas Fehlmann 

Euro Project Office AG 

8049 Zürich, Switzerland 

+41 44 253 1306 

thomas.fehlmann@e-p-o.com 

Eberhard Kranich 

Euro Project Office  

47051 Duisburg, Germany 

+41 44 253 1306 

eberhard.kranich@e-p-o.com 

Abstract 

Arrow terms of the form {𝑎1, 𝑎2, … , 𝑎𝑛} → 𝑏 have been proposed by Scott 

and Engeler, 50 years ago, as a model for combinatory logic. Since combina-

tory logic is Turing-complete, the model causes interest for domains dealing 

with knowledge, such as artificial intelligence. It has been used to model neu-

ral networks – how the brain works – and connect the notion of computability 

with observability in natural science. In software testing, arrow terms serve 

as representation for test cases that allow combination, and thus automated 

generation of more test cases for testing complex systems.  

However, knowledge is not a well-defined notion. It is sometimes referred to 

as awareness of facts or as practical skills and may also refer to familiarity 

with objects or situations. Knowledge of facts is distinct from opinion or 

guesswork by virtue of justification. Facts are usually described as a set of 

conditions, followed by a consequence. This makes the arrow term model an 

accurate model for knowledge. 

Knowledge about facts can lead to theories. A theory is knowledge under 

control. Theories can be approximated by control sequences. The combina-

tion of knowledge and theories makes up for intelligent systems. 

Keywords: Combinatory Logic, Arrow Term Models, Artificial Intelligence, 

Learning Systems, Intelligent Systems, Intuitionism. 

Introduction 

Paper Intent 

In the early 20th century, there were some shocking events taking place in 

mathematical logic and natural science. Gödel (Gödel, 1931), when trying to 

solve some of Hilbert’s 23 problems, detected that predicate logic, something 

with a very long history dating back to the ancient Greeks, see Engeler 

(Engeler, 2020), is undecidable. This insight gave birth to theoretical com-

puter science, including the theory of computation, founded by Turing 

(Turing, 1937). For a modern compilation, see e.g., Raatikainen (Raatikainen, 

2020). 

Schönfinkel and Curry developed Combinatory Logic (Curry & Feys, 1958) 

to avoid the problems introduced when using logical quantifiers, and Church 



invented Lambda Calculus as a rival formalism (Church, 1941). Scott and 

Engeler developed the Graph Model (Engeler, 1981), based on Arrow Terms, 

and proved that this is a model of combinatory logic. This means that you can 

combine sets of arrow terms to get new arrow terms, and that combinators, 

accelerators, and constructors can be used to create new elements of algebra. 

Graphs in the form of neural networks appeared already at the origins of Ar-

tificial Intelligence (AI). Its first instantiation in modern times was the Per-

ceptron, a network of neurons postulated by Rosenblatt (Rosenblatt, 1957). 

It later became a directed graph (Minsky & Papert, 1972). Rosenblatt was 

also the first postulating concepts, among perception and recognition, as con-

stituent parts of AI (Rosenblatt, 1957, p. 1). 

Since its origins, AI has experienced ups and downs; however, today it seems 

to have become mainstream insofar as there are many AI applications that 

provide value for the user. In some areas, training an AI model is much sim-

pler and more rewarding than finding and programming an algorithm (Nico 

Klingler (viso.ai), 2023). 

Nevertheless, temporal patterns (Rosenblatt, 1957, p. 2) still are not available 

in AI and provide quite a challenge, as exemplified by the ARC challenge, a 

sort of intelligence test for AI models, proposed by Chollet (Chollet, 2019). 

The Graph Algebra of Arrow Terms 

Let ℒ be a non-empty set. Engeler (Engeler, 1981) defined a Graph as the set 

of ordered pairs: 

 〈{𝑏1, 𝑏2, … , 𝑏𝑚}, 𝑐〉 (1) 

with 𝑏1, 𝑏2, … , 𝑏𝑚 , 𝑐 ∈ ℒ. We prefer to write {𝑎1, … , 𝑎𝑚} → 𝑏 instead of the 

ordered pair to make notation mnemonic and call them Arrow Terms. These 

terms describe the constituent elements of directed graphs with multiple ori-

gins and a single node. We extend the definition of arrow terms to include all 

formal set-theoretic objects recursively defined as follows: 

 

Every element of ℒ is an arrow term. 

Let 𝑎1, … , 𝑎𝑚 , 𝑏 be arrow terms.  

Then {𝑎1, … , 𝑎𝑚} → 𝑏 is also an arrow term. 
(2) 

The left-hand side of an arrow term is a finite set of arrow terms, and the 

right-hand side is a single arrow term. This definition is recursive. Elements 

of ℒ are also arrow terms. The arrow, where present, should suggest the or-

dering in a graph, not logical imply.  

The Algebra of Observations 

Let now ℒ be more specific, namely the non-empty set of assertions over 

certain objects of the real world, observable and recognizable by suitable AI 

models, in some formal language about that domain. Examples include state-

ments about gravity, temperature, matter, molecules, or any object that can 

be tagged using AI (Nico Klingler (viso.ai), 2023).  



Denote by 𝒢(ℒ) the power set containing all arrow terms of the form (2). The 

formal definition in set-theoretical language is given in equation (3) and (4): 

 

𝒢0(ℒ) = ℒ 

𝒢𝑛+1(ℒ) = 𝒢𝑛(ℒ) ∪ {{𝑎1, … , 𝑎𝑚} → 𝑏|𝑎1, … , 𝑎𝑚 , 𝑏 ∈ 𝐺𝑛(𝐿), 𝑚 ∈ ℕ} 

for 𝑛 =  0, 1, 2, … 

 

(3) 

The definition is recursive. Thus, 𝒢(ℒ) is the set of all (finite and infinite) 

subsets of the union of all 𝒢𝑛(ℒ): 

 𝒢(ℒ) = ⋃  𝒢𝑛(ℒ)

𝑛∈ℕ

 
 

(4) 

The elements of 𝒢𝑛(ℒ) are arrow terms of level 𝑛. Terms of level 0 are named 

Observations, a finite set of arrow terms of level 1 or higher is called Con-

cept; finite or infinite sets of arrow terms, including observations and con-

cepts, are called Knowledge.  

The definition of an application between two finite or infinite sets of arrow 

terms 𝑀, 𝑁 – observations, concepts, and knowledge equally – makes 𝒢(ℒ) 

an algebra: 

 𝑀 • 𝑁 = {𝑐|∃{𝑏1, 𝑏2, … , 𝑏𝑚} → 𝑐 ∈ 𝑀; 𝑏𝑖 ∈ 𝑁} (5) 

𝒢(ℒ) is closed under the application operation. 

According to Engeler (Engeler, 1981), the motivation behind this definition 

is, when starting with observations about some domain, arrow terms represent 

knowledge about that domain. Examples include the Neural Algebra of Eng-

eler (Engeler, 2019). Thus, it might be of interest to engineers who want to 

handle knowledge, and in fact, AI was the ultimate vision at the time the 

graph model was conceived (Engeler, 1995). 

Why the Left Hand of a Concept Must be a Set, not a Conjunction. 

The use of a set for the left-hand side of an element of a concept is essential; 

if one tries with a conjunction, one gets a model for typed lambda calculus, 

see Bimbó (Bimbó, 2012). Such models may still have interesting properties; 

in some respect, they produce deterministic outcomes and are easy to prove 

for correctness; however, they are not relevant for AI. 

Today’s world of intelligent and smart products is far from producing deter-

ministic outcomes, and some products have cyber-physical effects on their 

environment that might harm people; thus, are safety relevant. Examples in-

clude autonomous vehicles and medical instruments but are today growing 

rapidly. 

The difference between conjunctions and sets is that sets might contain con-

tradictory elements, annihilated by conjunctions. For software testing, espe-

cially for testing smart systems using AI und Deep Learning, it is of essence. 

In the famous case of the Tempe crash (March 18, 2018), the crash report 

shows that the scenario recognition system of the autonomous car on its su-



pervised trial run had seven seconds to react – largely sufficient for an emer-

gency break – but recognized three different objects: a person, a bike, and 

plastic bags. These perceptions are mutually excluding, but you would never 

allow an autonomous car emergency breaking because of a plastic bag, but 

exactly such different perceptions happen in the real world. Intelligent things 

as well as humans experience this. A test bench must therefore never require 

test data to be consistent if it’s required to test safety relevant features, such 

as whether an autonomous car starts the risky action of an emergency stop. 

Intelligent Systems 

Currently, there is much ado about AI, including chat boxes that possibly 

qualify as a scientific author. AI systems have a stunning ability to collect 

information and process hem, without programming. However, how do ob-

servations connect to the real world? Referring to objects that exhibit some 

usual behavior?  

This process is called Grounding (Zhong, et al., 2022). Every human knows 

that gravity prevents heavy objects from flying, something that is easily ex-

pressed by a concept, but today’s AI can just collect observations about heavy 

objects and derive a model out of this. Quite a tedious process. It needs a huge 

bunch of samples until it sort of “knows” about the effect of gravity. By 

grounding an observation to a known object of the real world, the intelligent 

system should know. 

The kind of knowledge that allows grounding, and much more, are Concepts. 

We will show how to implement concepts in Engeler neural algebra. 

Research Questions 

In this paper, we discuss several open points: 

1. What is a suitable theoretical foundation of AI? 

2. Does handling knowledge with concepts enable intelligent systems 

(AI) to learn faster and become more predictable? 

3. How should intelligent systems evolve to incorporate the arrow term 

algebra into their behavior? 

4. Will intelligent systems ever be able to solve new problems on their 

own? 

Paper Content 

We start with an introduction to Combinatory Logic and explain why this 

logical construct is of interest to mathematicians who are looking at the foun-

dations of their science. 

Next, we introduce Arrow Terms as a model for combinatory logic and ex-

plain what it has to do with intuitionism. We explain why arrow terms serve 

as a generalization of knowledge and how concepts might be used to solve 

problems. 



Then we explore the possibility of programming concepts. The intelligent 

system might combine such concepts, to the possibility of creating new con-

cepts out of combining them, based on observations by the machine itself.  

Finally, we outline a few conclusions and answer the research question. 

Combinatory Logic 

Combinatory Logic and the Axiom of Choice  

Combinatory Logic is a notation to eliminate the need for quantified variables 

in mathematical logic, and thus the need to explain what means ∃𝑥 ∈ 𝑀, 

“there exists some 𝑥 in some set 𝑀”, see Curry et. al. (Curry & Feys, 1958) 

and (Curry, et al., 1972). Eliminating quantifiers is an elegant way to avoid 

the Axiom of Choice (Fehlmann & Kranich, 2020) in its traditional form. 

Combinatory Logic can be used as a theoretical model for computation and 

as design for functional languages (Engeler (Engeler, 1995)); however, the 

original motivation for combinatory logic was to better understand the role of 

quantifiers in mathematical logic. 

It is based on Combinators which were introduced by Schönfinkel in 1920. 

A combinator is a higher-order function that uses only functional application, 

and earlier defined combinators, to define a result from its arguments.  

The combination operation is denoted as 𝑀 • 𝑁 for all combinatory terms 

𝑀, 𝑁. To make sure there are at least two combinatory terms, we postulate 

the existence of two special combinators 𝐒 and 𝐊. They are characterized by 

the following two properties (6) and (7): 

 𝐊 • 𝑃 • 𝑄 = 𝑃 (6) 

 𝐒 • 𝑃 • 𝑄 • 𝑅 = 𝑃 • 𝑄 • (𝑃 • 𝑅) (7) 

where 𝑃, 𝑄, 𝑅 are terms in combinatory logic1. The combinator 𝐊 acts as pro-

jection, and 𝐒 is a substitution operator for combinatory terms. Equations (6) 

and (7) act like axioms in traditional mathematical logic. 

Like an assembly language for computers, or a Turing machine, the 𝐒-𝐊 terms 

become quite lengthy and are barely readable by humans, but they work fine 

as a foundation for computer science.  

The power of these two operators is best understood when we use them to 

define other, handier, and more understandable combinators: The identity 

combinator for instance is defined as  

 𝐈 ≔ 𝐒 • 𝐊 • 𝐊 (8) 

Indeed, 𝐈 • 𝑀 = 𝐒 • 𝐊 • 𝐊 • 𝑀 = 𝐊 • 𝑀 • (𝐊 • 𝑀) = 𝑀. Association is to the 

left.  

 

1 The use of variables named 𝑃, 𝑄, 𝑅 is borrowed from Engeler (Engeler, 2020). 



Moreover, 𝐒 and 𝐊 are sufficient to build a Turing-machine. Thus, combina-

tory logic is Turing-complete. For a modern proof, consult Barendregt 

(Barendregt & Barendsen, 2000, pp. 17-22). 

Functionality by the Lambda Combinator 

Curry’s Lambda Calculus (Barendregt, 1977) is a formal language that can 

be understood as a prototype programming language. The 𝐒-𝐊 terms imple-

ment the lambda calculus by recursively defining the Lambda Combinator 𝐋𝐱 

for a variable 𝑥 as follows: 

 

𝐋𝐱 • 𝑥 = 𝐈 

𝐋𝐱 • 𝑌 = 𝐊 • 𝑌 if 𝑌 different from 𝐱 

𝐋𝐱 • 𝑀 • 𝑁 = 𝐒 • 𝐋𝐱 • 𝑀 • 𝐋𝐱 • 𝑁 

(9) 

The definition holds for any term 𝐱 of combinatory logic. Usually, on writes 

suggestively 𝜆𝑥. 𝑀 instead of 𝐋𝐱 • 𝑀, for any combinatory term 𝑀. Note that 

𝜆𝑥. 𝑀 is a combinatory term, as proofed by (9), and that we now introduced 

some sort of variable into combinatory logic with a precise binding behavior.  

The Lambda combinator allows writing programs in combinatory logic using 

a higher-level language. When a Lambda term gets compiled, the resulting 

combinatory term is like machine code for traditional programming lan-

guages.  

The Fixpoint Combinator 

Given any combinatory term 𝑍, the Fixpoint Combinator 𝐘 generates a com-

binatory term 𝐘 • 𝑍, called Fixpoint of 𝑍, that fulfills 𝐘 • 𝑍 = 𝑍 • (𝐘 • 𝑍). 

This means that 𝑍 can be applied to its fixpoint as many times as wanted and 

still yields back the same combinatory term.  

In linear algebra, such fixpoint combinators yield an eigenvector solution to 

some problem 𝑍; for instance, when solving a matrix in linear algebra 

(Fehlmann, 2016). It is therefore tempting to say, that 𝐘 • 𝑍 is a solution for 

the problem 𝑍.  

According to Barendregt (Barendregt & Barendsen, 2000, p. 12), the fixpoint 

combinator can be written as  

 𝐘: = 𝜆𝑓. (𝜆𝑥. 𝑓 • (𝑥 • 𝑥)) • (𝜆𝑥. 𝑓 • (𝑥 • 𝑥)) (10) 

Translating (10) into an 𝐒-𝐊 term proves possible but becomes a bit lengthy. 

It demonstrates how combinatory logic works; consult last year’s ATINER 

paper (Fehlmann & Kranich, 2022). For more sample combinators, consult 

Zachos (Zachos, 1978). 

However, the fixpoint combinator is not the solution of all our problems. 

When applying 𝐘, or any other equivalent fixpoint combinator to a combina-

tory term Z, reducing the term by repeatedly using rule (6) and (7) does not 

always terminate. An infinite loop can occur, and must sometimes occur, oth-

erwise Turing would be wrong and all finite state machines would reach a 

finishing state (Turing, 1937).  



The Graph Model of Combinatory Logic 

Why a Model? 

A Model for a logical structure is a set-theoretic construction that has the 

properties postulated for the logic and can be proved to be non-empty. Then 

it means that logic makes sense insofar as it describes some structure that 

really exists. 

Einstein-Notation for Arrow Terms 

To avoid the many set-theoretical parenthesis, the following notation, called 

Arrow Schemes, is applied, in analogy to the Einstein notation (Fehlmann, 

2020, p. 6): 

 

• 𝑎𝑖 for a finite set of arrow terms, 𝑖 denoting some Choice 

Function selecting finitely many specific terms out of a set 

of arrow terms 𝑎. 

• 𝑎1 for a singleton set of arrow terms; i.e., 𝑎1 = {𝑎} where 𝑎 

is an arrow term. 

• ∅ for the empty set, such as in the arrow term ∅ → 𝑎. 

• 𝑎𝑖 + 𝑏𝑗 for the union of two sets 𝑎𝑖 and 𝑏𝑗 of observations. 

(11) 

The application rule for 𝑀 and 𝑁 now reads: 

 𝑀 • 𝑁 = (𝑏𝑖 → 𝑎) • 𝑁 = {𝑎|∃𝑏𝑖 → 𝑎 ∈ 𝑀; 𝑏𝑖 ⊂ 𝑁} (12) 

where (𝑏𝑖 → 𝑎) ⊂ 𝑀 is the subset of level 1 arrow terms in 𝑀. With these 

conventions, (𝑥𝑖 → 𝑦)𝑗 denotes a Concept, i.e., a non-empty finite set of ar-

row terms with level 1 or higher, together with two choice functions 𝑖, 𝑗. Each 

set element has at least one arrow. 

The choice function chooses some specific observations 𝑎𝑖 out of a (possibly 

larger) set of observations 𝑎. This is what Zhong describes as grounding when 

linking observations to real-world objects (Zhong, et al., 2022). If 𝑎 denotes 

knowledge, i.e., a possibly infinite set of arrow terms of any level, 𝑎𝑖 can 

become part of a concept consisting of specific arrow terms referring to some 

specific sample knowledge, specified by the choice function 𝑗. Choice func-

tions therefore have the power of focusing knowledge to specific objects in 

specific areas. That makes choice functions interesting for intelligent systems 

and AI. 

There is a conjunction of choice functions, thus 𝑎𝑖,𝑗  denotes the union of a 

finite number of 𝑚 concepts: 

 𝑎𝑖,𝑗 =  𝑎𝑖,1 ∪ 𝑎𝑖,2 ∪ … ∪ 𝑎𝑖,𝑗 ∪ … ∪ 𝑎𝑖,𝑚 = ⋃ 𝑎𝑖,𝑘

𝑚

𝑘=1

 (13) 

There is also cascading of choice functions. Let 𝑁 = (𝑎𝑗 → 𝑥)
𝑘
 then: 

 
𝑀 = (((𝑎𝑗 → 𝑥)

𝑘
→ 𝑥𝑖)

𝑙
→ 𝑦) and 

𝑀 • 𝑁 = (𝑥𝑖𝑙
→ 𝑦) 

(14) 



The choice function might be used for grounding a concept to observations.  

An arrow scheme without outer indices represents a potentially infinite set of 

arrow terms. Thus, writing 𝑎, we mean knowledge about an observed object. 

Adding an index, 𝑎𝑗, indicates such a grounded object together with a choice 

function 𝑗 that chooses finitely many specific observations or knowledge. 

While on the first glimpse, the Einstein notation seems jut another way of 

denoting arrow terms, for representing such data in computers it means that 

the simple enumeration of finite data sets is replaced by an intelligent choice 

function providing grounding that must be computed and can be either pro-

grammed or guessed by an intelligent system. 

The Graph Model – A Model of Combinatory Logic 

The algebra of observations represented as arrow terms is a combinatory al-

gebra and thus a model of combinatory logic. The following definitions 

demonstrate how observations implement the combinators 𝐒 and 𝐊 fulfilling 

equations (6) and (7). 

 

• 𝐈 = 𝑎1 → 𝑎 is the Identification, i.e., (𝑎1 → 𝑎) • 𝑏 = 𝑏 

• 𝐊 = 𝑎1 → ∅ → 𝑎 selects the 1st argument: 

𝐊 •  𝑏 • c = (𝑏1 → ∅ → 𝑏) • 𝑏 • c = (∅ → 𝑏) • c = b 

• 𝐊𝐈 = ∅ → 𝑎1 → 𝑎 selects the 2nd argument: 
𝐊𝐈 • 𝑏 • c = (∅ → 𝑐1 → 𝑐) • 𝑏 • c = (𝑐1 → 𝑐) • 𝑐 = c 

• 𝐒 = (𝑎𝑖 → (𝑏𝑗 → 𝑐))
1

→ (𝑑𝑘 → 𝑏)𝑖 → (𝑎𝑖 + 𝑏𝑗,𝑖 → 𝑐) 

(15) 

Therefore, the algebra of observations is a model of combinatory logic. The 

interested reader can find complete proofs in Engeler (Engeler, 1981, p. 389).  

With 𝐒 and 𝐊, an abstraction operator can be constructed that builds new 

knowledge bases, following equation (9) (9). In the setting of a combinatory 

algebra, this is called Lambda Theorem; see Barendregt (Barendregt, 1977). 

Instances of the Graph Model  

Number Theory. The assertions ℒ might be numerical formulas. Then 𝒢(ℒ) 

is the knowledge about number theory that can be combined and processed 

using the lambda calculus, or solved by fixpoint combinators, or controlled 

by some controlling combinators. The latter is better known as infinite series, 

with or without convergence. 

Neural Network. Engeler used the arrow term model to explain how the brain 

thinks. The Graph Model of Combinatory Logic explains how complex 

scripts of behavior and conceptual content can reside in, combine, and inter-

act on large neural networks. The neural hypothesis attributes functions of the 

brain to sets of firing neurons dynamically: to cascades of such firings, typi-

cally visualized by imaging technologies. 

Such sets are represented as the elements of what Engeler calls a Neural Al-

gebra with their interaction as its basic operation. The neuro-algebraic thesis 



identifies “thoughts” with elements of a neural algebra and “thinking” with 

its basic operation (Engeler, 2019). 

Engeler argues for this thesis by a thought-experiment. It examines examples 

of human thought processes in proposed emulation by neural algebras. Prob-

lems such as controlling, classifying, and learning are analyzed. In neural al-

gebras these may be posed as algebraic equations, whose solutions may lead 

to extensions of a neural algebra by new elements. Modelling of such exten-

sions consists of formal analogues to familiar faculties such as reflection, dis-

tinction and comprehension which can be made precise as operations on the 

algebra. Barendregt gives handy examples of such precise algebra operations 

in the chapter about “The Power of Lambda Calculus” in his seminal book 

(Barendregt, 1984, pp. 17-22). 

An advantage of such an approach is that this modelling leads directly to brain 

functions. From the cascades of such functions, we obtain the neurons in-

volved in them, and their connective structure, and mathematically describe 

their behavior. 

Autonomous Real-time Testing. Fehlmann (Fehlmann, 2020) proposes the 

arrow term model for automatically creating test cases for highly complex 

systems. Instead of observations, the domain ℒ consists of assertions about 

the status of the program under test, and the level 1 arrow terms describe test 

cases. Sets of test cases can be combined as any arrow term sets and allow 

developing new test cases automatically. 

Controlling operators, see next section, are usually quite simple: in most 

cases, it is sufficient to combine test cases on the lowest possible level, i.e., 

on 𝒢1(ℒ), and connect them with their value for the user. This is especially 

useful when testing large, complex systems of systems ensuring correct co-

operation between different component systems.  

Higher-level controlling operators are conceivable and might become of es-

sence for testing intelligent systems. Testing concepts, if reused, have the po-

tential to become the most important asset of companies providing intelligent 

products. 

Controlling Combinators  

The Need for a Temporal Extension in AI 

AI-powered Visual Recognition Systems excel in recognizing and classifying 

objects. However, they are weak at recognizing temporal dependencies and 

unable to combine learnings. AI lacks what humans use in such cases: a con-

cept. 

Controlling Combinators for Solving the Control Problem 

The concept of Control involves a Controlling Operator 𝐂 which acts on a 

controlled object 𝑋 by application 𝐂 • 𝑋. Control means that the knowledge 

represented by 𝑋 is completely known and described. It is a similar approach 

as establishing a fixpoint.  



Accomplishing control can be formulated by: 

 𝐂 • 𝑋 = 𝑋 (16) 

The equation (16) is a theoretical statement, usually an infinite loop process. 

For solving practical problems, 𝑋 must be approximated by finite subterms. 

The control problem is solved by a Control Sequence 𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆ ⋯, a 

series of finite subterms, determined by (17): 

 𝑋𝑖+1 = 𝐂 • 𝑋𝑖 , 𝑖 ∈ ℕ (17) 

starting with an initial 𝑋0. This is called Focusing. The details can be found 

in Engeler (Engeler, 2019, p. 299). The controlling operator 𝐂 gathers all fac-

ulties that may help in the solution. Like equation (10), controlling operators 

consist rather of structural content than of single observations. The control 

problem is a repeated process of substitution, like finding the fixpoint of a 

combinator.  

Within this setting, it is possible to define models for reasoning (Engeler, 

2019), problem solving, and software and systems testing (Fehlmann & 

Kranich, 2019).  

Use the Choice Function for Grounding 

A Concept of Level 1 consists of a set of arrow terms of the form (18) 

 𝑥𝑗 → 𝑦 (18) 

where 𝑥 denotes observations. The choice function 𝑗 selects specific observa-

tions for some real-world object. With Zhong (Zhong, et al., 2022), we use 

the term “grounding” for such choice functions. The response 𝑦 describes the 

expected properties of the observations 𝑥. The choice function 𝑗 appears again 

in 𝑦, specifying expected behavior or properties that are consequences from 

the observations 𝑥𝑗. With such a concept, we can describe behavior of real-

world objects that are otherwise hard for an intelligent system to guess. 

The choice function 𝑗 is computable and constructive, referring to the prop-

erties of the base elements of the set of observations 𝑥. According to the 

Lambda theorem (9), it can be programmed. The concept based on choice 

functions grounds arrow schemes to basic observations.  

The knowledge acquired by new observations growths: 

 𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆ ⋯ (19) 

Thus, the index creates a control sequence (19), formally in the same way as 

Engeler explains how the brain thinks (Engeler, 2019, p. 301). 

Programming the Choice Function 

The more concepts an intelligent system has at its disposal, the faster it will 

solve problems, and the more reliable and predictable will its decisions be. It 

is therefore a good idea to write domain-specific concepts in the beforehand. 

Neither for humans nor for intelligent systems, training the choice function is 

a simple task. However, because we use combinatory algebra, concepts can 



be combined. For instance, we might combine a concept looking for pixels 

with a specific color logo with another exploring specific positioning between 

the pixels of interest.  

Concepts thus seem an approach to add a sort of external programmability to 

intelligent machines that essentially blast the existing paradigm of “Learning” 

in AI. We no longer are restricted to training neural networks and creating 

models – in fact, by multilinear optimization – but add the capabilities of 

modern algorithmic programming. The arrow terms “assembly language” is 

the layer where combination occurs. On this layer, concepts can combine with 

observations and increase knowledge. Higher level concepts might add new 

power to concepts. Thus, this serves as a strong motivation to continue with 

the explanation of what a “concept” means in the context of the graph model.  

Focusing using Attractors 

The control problem is a repeated process of substitution, like finding the 

fixpoint of a combinator. Within this setting, it is possible to define models 

for reasoning, problem solving, and scientific observations. However, not 

only flat reasoning, but also for solving problems, even if their fixpoint is 

infinite. 

Let 𝑋 be an expandable, unorganized set of observations. Apply the control-

ling combinator 𝐂 to 𝑋 with the aim to accomplish control, see equation (16). 

Then, solutions are obtained by Focusing: 

 𝑋𝑖+1 = 𝐂 • 𝑋𝑖 ,  𝑖 ∈ ℕ (20) 

Starting with initial evidence 𝑋0, the controlling combinator 𝐂 creates the 

control sequence 𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆ ⋯ towards an optimum solution contain-

ing all elements of the control sequence, eventually reaching 𝑋. This optimum 

solution is called an Attractor. The details can be found in Engeler (Engeler, 

2019, p. 301). 

In natural science, it is tempting to call such a controlling combinator a The-

ory, since the control sequence predicts evidence.  

The concept 𝐂 gathers all faculties that may help in finding the solution of a 

problem. Using the Lambda theorem as of equation (9), concepts consist ra-

ther of structural content than of single observations. The control problem is 

a repeated process of substitution, like finding the fixpoint of a combinator. 

Nevertheless, concepts may relate to the domain ℒ by choice functions 𝒋. 

Thus, it is possible to write concepts that meet safety or security requirements. 

Or, concepts can be used to implement morally aware behavior, for instance 

avoiding racial or gender bias, even if the AI training set was not perfect. 

Concepts thus can address societal reservations about AI by controlling 

grounding references made in the knowledge used for decisions. Concepts 

can make AI decisions transparent to humans. 

Examples of concepts include combinators that extract only a part of 

knowledge, like 𝑲 and 𝑲𝑰, or conditional branching, or conjunction and dis-

junction. Some concepts repeat actions until a certain condition holds and 



may repeat actions potentially forever. A concept implements mechanisms 

known from programming but with references to the grounded objects. 

Obviously, it is much easier to create such a conceptually defined controlling 

combinator by programming techniques, programming the choice function 𝑗 

using the Lambda Theorem (9). Programmers can create controlling combi-

nators that select the objects with suitable properties and give these to the 

machine as concepts. The intelligent system alone would encounter major 

difficulties to guess the right indexing choice functions, without help by a 

programmer.  

A Classification of Concepts (“Controlling Combinators”) 

Concepts exist on different levels: 

Indexing Controls describe concepts C that apply the same choice function 

to different but similar knowledge. Such concepts allow grounding objects of 

the real world to observations and make learning for intelligent systems much 

faster. Indexing Controls can be programmed easily and used to teach an in-

telligent system what gravity is, or how children behave when playing with a 

football. Such knowledge is easily programmable by choice functions. 

Most indexing control concepts remain on level 1 and are easy to handle be-

cause humans still can understand what concepts do. 

Holding Controls are concepts 𝐂 that stop adding more knowledge at a cer-

tain point after 𝑛 steps: 

 
𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆ … ⊆ 𝑋n = 𝑋n+1 = … for 𝑋𝑖+1 = 𝐂 • 𝑋𝑖 

where 𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆ …is a control sequence 
(21) 

An example is a finite list of facts 𝐂 • 𝑋 = 𝑋. Because of the hold at a certain 

point in time, this is still understandable by humans, and they can follow its 

reasoning. 

Attractor Controls are concepts C that continuously add more knowledge, 

without limit. An example is the famous fixpoint 𝒀 • 𝑍 that yields 𝐘 • 𝑍 =
𝑍 • (𝐘 • 𝑍) for any given combinator 𝑍. 

This is a difficult approach because attractor concepts seem to conceive a 

higher kind of intelligence than humans usually can exhibit. Human control-

ling sequences are limited anyway because of the finite lifespan of humans, 

see Engeler’s sample “Neural Model-Mathematician” (Engeler, 2019, p. 

306). Attractor control concepts are relentlessly adding knowledge from a 

theory. This iterates that as long as needed, until a stage of knowledge is 

reached that meets certain predefined quality criteria. 

The Problem with Concepts 

While the theory looks appalling and easy, and programming in Lambda cal-

culus familiar, transforming a Lambda term into a combinator is tedious, and 

into a set of arrow terms is something only a machine can do flawlessly. That 

might be exactly the reason why combination of concepts hasn’t been studied 



earlier. Combining arrow term sets simply becomes too complicated. But en-

gineers are frightened by the prospect of computational complexity, as long 

as it remains controlled. 

While programming concepts in Lambda calculus seems not more compli-

cated than writing symbolic programs in Lisp or Scala, transforming Lambda 

terms into S-K terms, and even more into sets of arrow terms, is far from 

intuitive and requires help by machines (“Rewrite rules”). 

Moreover, we can combine concepts not only by functional application 

(“Currying”), but also by help of higher-level programming concepts such as 

disjunction, conjunction, or conditional branching, as well as unconditional 

loops (“For-loops”) or even conditional loops that potentially never stop iter-

ations. All these programming concepts can be expressed in combinatory 

logic and thus might become instrumental for combining concepts for AI sys-

tems. 

A Roadmap towards Introducing Concepts in Artificial Intelligence 

We summarize the arguments given as follows: we have observations made 

by AI and we use concepts to teach the intelligent system what to do with 

those observations. It is true that such concepts can be acquired by AI without 

human help, but this is a tedious and lengthy task. It is easier for a machine 

to choose concepts from a collection of already existing concepts – which 

might prove to be successful – than to being trained in them every time from 

scratch. An initial set of concepts is what human programmers can furnish to 

an intelligent machine. However, a system can only then be called “intelli-

gent” if it can combine concepts without help from a human. 

Joining Forces: Traditional Functional Programming supports Concepts. 

Machines learn to recognize and correctly identify objects, both logically and 

visually, using traditional AI methods, modeling the real world by multilinear 

optimization. But only concepts enable them to create new problem solutions.  

Concepts can be programmed using the DevOps paradigm. An intelligent sys-

tem needs a minimum selection of concepts to solve real-world problems. In 

turn, an intelligent system can combine various concepts and select the most 

promising ones based on Cost Functions that reflect relevance for the user.  

This is somewhat analogue to the invention of flying machines that initially 

were thought to imitate bird’s light, until aerodynamic uplift was better un-

derstood. Probably, by training traditional models AI will not be able to de-

velop controlling combinators, or concepts, adopting the way brains recog-

nize patterns. Engeler calls for a “Teaching Combinator” that is needed to 

help brains to develop such concepts. As in humans, there is some external 

help needed. 

Using traditional programming enables machines to learn concepts. Program-

ming concepts is possible thanks to Barendregt’s Lambda theorem (9). This 

does not mean that machines cannot become creative and learn to combine 



concepts themselves - much like humans do. Concepts are elements of com-

binatory algebra, always allowing for combination. The reader should note 

once more how important it is to use type-free programming.  

The problem with combining concepts is the same as with any deep learning 

approach: a cost function must be found that allows to choose valuable com-

binations out of the variety of possible combinations of concepts. Machines 

are good at simulation, probably better than humans. It should not be difficult 

to define such cost functions based on simulation of event outcomes. 

From Creating Concepts to Empathetic, Intelligent Systems 

Concepts add dynamic, algorithmic, and temporal intelligence to deep learn-

ing, that in turn is rather static, statistical learning. Programmers tell robots 

what to do with their static insights, using concepts. In turn, robots can select 

concepts themselves if found useful. This is a new hybrid humanoid: Deep 

learning plus algorithms combined. 

In a competitive environment, good concepts will become decisive for decid-

ing what intelligent system to acquire, and thus deciding about commercial 

success or failure of intelligent systems. 

Conclusions 

Intuitionism and Choice Functions 

The Graph Model is an extremely rich structure for representing quite differ-

ent topics such as 

• The way how the brain thinks. 

• Product improvement with focus on customer needs by Quality Func-

tion Deployment (QFD). 

• Testing of complex, software-intense systems with thousands of Em-

bedded Control Units (ECU). 

• Making AI intelligent. 

Choice functions offer a constructive way to ground knowledge; existence of 

a choice always means existence of an algorithm that does the choice, as sug-

gested by Intuitionism (Fehlmann & Kranich, 2020). This is somewhat coun-

ter-intuitive to human perception of the world but reflects the standpoint of 

mathematical logic (Fehlmann & Kranich, 2020). It enables intelligent sys-

tems to behave truly reasonable and rationally. 

Research Questions 

Regarding question 1, we proposed a theoretical foundation for AI which is 

not new but rather based on ideas from Rosenblatt, Scott, and Engeler. 

With concepts, we can build intelligent systems that behave predictably when 

able to apply the right concept. Testing such systems, or relying on such sys-

tems, is easier than with traditional model-based AI. You not only can do 

black-box testing but, using concepts, you can even perform white-box tests. 

This is a big advantage if intelligent systems should become accountable for 



social and environmental well-being. The answer to research question 2 likely 

is affirmative. 

Regarding question 3, how should intelligent systems evolve, we answer by 

referring to DevOps as the development methodology of choice to enable in-

telligent systems. 

The answer to research question 4, will intelligent systems ever be able to 

solve new problems on their own, must remain open. Experience with AI 

suggests a positive answer, but the proof is yet open, and subject to more 

work in the direction of Turing (Turing, 1937) and Chollet (Chollet, 2019), 

who devised some sort of intelligence quotient test for AI. 

What can be concluded, is that adapting the von Neumann principle to AI, 

representing knowledge by combinators and use a common framework, the 

arrow terms, to represent both knowledge and programs, yields a wide range 

of possibilities and new opportunities (Copeland, 2006). Moreover, it might 

enhance the concept of an intelligent system to something that fits into the 

DevOps paradigm. 

Open Questions 

How to program concepts exactly? 

• Lisp, Scala, others? 

• How to link program code to observed objects? 

What is the cost function for combining concepts? 

• Functional size? 

• Parallel computation? 

Will AI machines eventually program themselves? 

• Is DevOps just a temporary solution? 

• Will DevOps become unnecessary for AI? 

• Do fixpoints help focusing (Fehlmann & Kranich, 2022)? 

How to protect the freedom of citizens against AI? 

• What about Security & Privacy? 

• How to test concepts for compliance? 

Acknowledgement. The authors would like to thank Hansruedi Jud from 

Lab42 in Davos, Switzerland, for his contributions, ingenious ideas, and crit-

ical comments regarding the ARC challenge, and the anonymous referees for 

their comments and suggestions which led to an improvement of the paper. 

References 

Barendregt, H. & Barendsen, E., 2000. Introduction to Lambda Calculus. 

Nijmegen: University Nijmegen. 

Barendregt, H. P., 1977. The Type-Free Lambda-Calculus. In: J. Barwise, Hrsg. 

Handbook of Math. Logic. Amsterdam: North Holland, pp. 1091 -1132. 



Barendregt, H. P., 1984. The Lambda Calculus – Its Syntax and Semantics. Studies 
in logic and the foundations of mathematics Hrsg. Amsterdam: North-

Holland. 

Bimbó, K., 2012. Combinatory Logic - Pure, Applied and Typed. Boca Raton, FL: 

CRC Press. 

Chollet, F., 2019. On the Measure of Intelligence. [Online]  

Available at: https://doi.org/10.48550/arXiv.1911.01547 

Church, A., 1941. The Calculi Of Lambda Conversion. Annals Of Mathematical 

Studies 6.  

Copeland, J., 2006. The Modern History of Computing, Stanford, CA: Stanford 

Encyclopedia of Philosophy. 

Curry, H. & Feys, R., 1958. Combinatory Logic, Vol. I. Amsterdam: North-

Holland. 

Curry, H., Hindley, J. & Seldin, J., 1972. Combinatory Logic, Vol. II. Amsterdam: 

North-Holland. 

Engeler, E., 1981. Algebras and Combinators. Algebra Universalis, Band 13, pp. 

389-392. 

Engeler, E., 1995. The Combinatory Programme. Basel, Switzerland: Birkhäuser. 

Engeler, E., 2019. Neural algebra on "how does the brain think?". Theoretical 

Computer Science, Band 777, pp. 296-307. 

Engeler, E., 2020. Aristotle’ Relations: An Interpretation in Combinatory Logic. 

arXiv: History and Overview. 

Fehlmann, T. M., 2016. Managing Complexity - Uncover the Mysteries with Six 

Sigma Transfer Functions. Berlin, Germany: Logos Press. 

Fehlmann, T. M., 2020. Autonomous Real-time Testing – Testing Artificial 

Intelligence and Other Complex Systems. Berlin, Germany: Logos Press. 

Fehlmann, T. M. & Kranich, E., 2019. Testing Artificial Intelligence by 

Customers' Needs. Athens Journal of Sciences, 6(4), pp. 265-286. 

Fehlmann, T. M. & Kranich, E., 2020. Intuitionism and Computer Science – Why 

Computer Scientists do not Like the Axiom of Choice. Athens Journal of 

Sciences, 7(3), pp. 143-158. 

Fehlmann, T. M. & Kranich, E., 2022. Designing and Testing Cyber-Physical 
Products - 4th Generation Product Management Based on AHP and QFD. 

Systems, Software and Services Process Improvement. EuroSPI 2022 Hrsg. 

Salzburg: Communications in Computer and Information Science, Springer, 

Cham. 

Fehlmann, T. M. & Kranich, E., 2022. The Fixpoint Combinator in Combinatory 
Logic - A Step towards Autonomous Real-time Testing of Software?. Athens 

Journal of Sciences, 9(1), pp. 47-64. 

Gödel, K., 1931. Über formal unentscheidbare Sätze der Principia Mathematica 
und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38(1), p. 

173–198. 

Minsky, M. & Papert, S., 1972. Perceptrons: An Introduction to Computational 

Geometry. 2nd edition with corrections Hrsg. Cambridge(MA): The MIT 

Press. 

Nico Klingler (viso.ai), 2023. The Ultimate Guide to Understanding and Using AI 

Models. [Online]  



Available at: https://viso.ai/deep-learning/ml-ai-models/ 

[Zugriff am 15 February 2023]. 

Raatikainen, P., 2020. Gödel’s Incompleteness Theorems. In: E. N. Zalta, Hrsg. 

The Stanford Encyclopedia of Philosophy. s.l.:s.n. 

Rosenblatt, F., 1957. The Perceptron: A Perceiving and Recognizing Automaton 

(Project PARA), Buffalo: Cornell Aeronautical Laboratory, Inc.. 

Turing, A., 1937. On computable numbers, with an application to the 

Entscheidungsproblem. Proceedings of the London Mathematical Society, 

42(2), pp. 230-265. 

Zachos, E., 1978. Kombinatorische Logik und S-Terme, Zurich: ETH Dissertation 

6214. 

Zhong, V. et al., 2022. Improving Policy Learning via Language Dynamics 

Distillation, Cornell University: arXiv:2210.00066v1. 

 
 


