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Abstract 

The Axiom of Choice (AC) says that every set has a representative element. 

However, deterministic computers cannot produce arbitrary elements. They 

need some algorithm that tells them, which one to choose. But then, the ele-

ment is no longer arbitrary. Even for a true random generator, you will need 

Entropy. This is data gathered from outside the system, and we as Theoretical 

Computer Scientists do not like that. Thus, we need to understand the Axiom 

of Choice better. For this, we use a model of Combinatory Logic. 

Keywords: Combinatory Logic, Combinatory Algebra, Intuitionism, Axiom 
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Introduction 

Zermelo–Fraenkel (ZF) set theory, named after mathematicians Ernst Zer-

melo and Abraham Fraenkel, is an axiomatic system that was proposed in the 

early twentieth century to formulate a theory of sets free of paradoxes such 

as Russell's paradox. For an introduction, see e.g., Potter (Potter, 2004).  

The famous Banach–Tarski paradox is a theorem in set-theoretic geometry, 

which states the following: Given a solid sphere in 3‑dimensional space, there 

exists a decomposition of the sphere into a finite number of disjoint subsets, 

which can then be put back together in a different way to yield two identical 

copies of the original sphere. Indeed, the reassembly process involves only 

moving the pieces around and rotating them without changing their shape. 

(Banach & Tarski, 1924). 

The number of pieces was subsequently reduced to five by Robinson 

(Robinson, 1947), although the pieces are extremely complicated. Five pieces 

are minimal, although four pieces are enough if the single point at the center 

is neglected. 

This sounds strange, counter-intuitive, and impracticable. Nevertheless, it re-

lies on the following reasoning: 

• If the Axiom of Choice (AC) holds, then non-measurable sets exist (Tao, 

2011); 

• If non-measurable sets exist, the Banach-Tarski paradox holds 

(Pawlikowski, 1991). 



A set is called measurable, if there is a systematic way to assign a number to 

each suitable subset, a Size, such that sizes of subsets can be added to get a 

measure for the size of the original set. For details, see Potter (Potter, 2004). 

So, why can the Banach-Tarski paradox be proven to be true, logically? Is 

mathematical logic flawed? No: A formal proof of the paradox uses an infin-

ity of spheres (set of all points whose distance to origin is constant), excluding 

the spheres of radius 0. For an elegant proof, see Rauglaudre (Rauglaudre, 

2017). For a quick idea instead of a full proof, just imagine that you always 

can fill your sphere with infinitely many copies of that sphere, pick a point in 

each sphere, rotate them by an angle to get yet another new sphere but differ-

ent from all previously picked spheres – this arguments uses the AC! – and 

still get infinitely many copies. Now separate the original set of spheres from 

the copies and you have two different, identical spheres.  

The Axiom of Choice and its Variants 

The Axiom of Choice (AC) says that given any family of non-empty sets 𝑆𝑖 

for 𝑖 ∈ 𝐼, there exists a function such that 𝑓(𝑖) ∈ 𝑆𝑖 for all 𝑖 ∈ 𝐼. 𝑓 is called a 

Choice Function. 

Obviously, the Banach-Tarski paradox makes it difficult to believe that the 

AC is indispensable in mathematics. Equivalent to the AC is the Well-ordering 

Theorem. It states that every set can be well-ordered. A set 𝑋 is well-ordered 

by a strict total order if every non-empty subset of 𝑋 has a least element under 

the ordering. This is intuitively not compelling, too.  

Real, Irrational Numbers Require the AC 

However, the AC is indispensable for many important – and intuitive – math-

ematical results; among them  

• Let ℝ be the closure of ℚ, the set of all rational numbers under con-

vergent sequences. Then, the convergence point is also in ℝ. 

• Many square numbers, such as √2, are not rational numbers, since 

assuming there are natural numbers 𝑝, 𝑞 ∈ ℕ with √2 = 𝑝/𝑞 leads to 

the conclusion that both 𝑝, 𝑞 must be dividable by 2. This contradicts 

the possibility of representing rational numbers by co-primes1. 

Nevertheless, irrational numbers are unhandy for a digital device. You only 

can represent them by their properties, i.e., as symbols. 

Combinatory Logic is a notation to eliminate the need for quantified variables 

in mathematical logic. The issue addressed with combinatory logic is the AC. 

What means “there exists something”, ∃𝑥 ∈ 𝑀, in some set 𝑀? Informally, 

the AC says that given any collection of non-empty sets, it is possible to select 

exactly one object from each set, without requiring an algorithm saying how 

the selection is done. In the theory of Complex Analysis, such an algorithm 

 

1 Co-primes are numbers which have 1 as the greatest common denominator. 



seems an unnecessary condition; in fact, complex analysis proved to be very 

successful without requiring constructive selection algorithms. 

The Intuitionistic Variant of the Axiom of Choice 

In Computer Science, the existence of selection algorithms seems a natural 

condition for the applicability of the AC. On a computer, nothing exists re-

sembling a program or process without an algorithm that effectively con-

structs it.  

Thus, as computer scientists we always presume a stronger version of the AC: 

there exists means, there exists an algorithm that allows to select exactly one 

representative from each collection of sets.  

Interestingly, this conditioning of the AC to Mathematical Logic has wide 

consequences. For instance, there exists a countable model of the real num-

bers, meeting all the axioms for real numbers. We can assure that the limit of 

any convergent sequence of real numbers exists and that it is itself a real num-

ber by selecting the convergence sequences themselves as a model. This is a 

measurable and enumerable set. In fact, there is no other way on a computer 

to implement real numbers than by such sequences.  

The famous digital representation for the relation between diameter and cir-

cumference of a circle, 𝜋, is an infinite sequence of digits that never repeat 

themselves; thus, not anything that exists within a digital device, not even 

within the universe. Only sequences that converge towards 𝜋 do exist. 

However, the Banach–Tarski paradox does not hold with the intuitionistic 

version of the AC, since there is no way selecting the right rotated spheres that 

allow to split the original ball into two identical spheres. 

Combinatory Logic 

There is a mathematical theory about Combinatory Algebras (Engeler, 1995) 

that explains quite generally how to combine topics in areas of knowledge. 

Combination is not only on the basic level possible; you can also explain how 

to combine topics on the second level; sometimes called meta-level. Intui-

tively, we would expect such a meta-level describing knowledge about how 

to deal with different knowledge areas.  

Combinatory algebras are models of Combinatory Logic (Curry & Feys, 

1958) and (Curry, et al., 1972). These are algebras that are combinatory com-

plete; i.e., there is a combination operation 𝑀 • 𝑁 for all elements 𝑀, 𝑁 in the 

combinatory algebra and the following two Combinators 𝐒 and 𝐊 can be de-

fined with the following properties 

 𝐊 • 𝑃 • 𝑄 = 𝑃 (1) 

and 

  𝐒 • 𝑃 • 𝑄 • 𝑅 = 𝑃 • 𝑄 • (𝑃 • 𝑅) (2) 

where 𝑃, 𝑄, 𝑅 are elements in the combinatory algebra.  



Thus, the combinator 𝐊 acts as projection, and 𝐒 is a substitution operator for 

terms in the combinatory algebra. Like an assembly language, the 𝐒-𝐊 terms 

become quite lengthy and are barely readable by humans, but they work fine 

as a foundation for computer science. 

The power of these two operators is best understood when we use them to 

define other, handier, and more understandable combinators: 

Identity 

The identity combinator is defined as  

 𝐈 ≔ 𝐒 • 𝐊 • 𝐊 (3) 

Indeed, 𝐈 • 𝑀 = 𝐒 • 𝐊 • 𝐊 • 𝑀 = 𝐊 • 𝑀 • (𝐊 • 𝑀) = 𝑀. Association is to the 

left. 

Functionality by the Lambda Combinator 

Curry’s Lambda Calculus (Barendregt, 1977) is a formal language that can 

be understood as a prototype programming language. 

The algebra of 𝐒-𝐊 terms models the lambda calculus by recursively defining 

the Lambda Combinator for a variable 𝐱 as follows: 

 

𝐋𝐱 • 𝑥 = 𝐈 

𝐋𝐱 • 𝑌 = 𝐊 • 𝑌 if 𝑌 different from 𝐱 

𝐋𝐱 • 𝑀 • 𝑁 = 𝐒 • 𝐋𝐱 • 𝑀 • 𝐋𝐱 • 𝑁 

(4) 

The definition holds for any variable 𝐱 in the combinatory algebra. 

For more details about the foundations of Mathematical Logic, see for in-

stance Barwise (Barwise, et al., 1977) or Potter (Potter, 2004). For more com-

binators in combinatory logic, see e.g., Zachos (Zachos, 1978). 

Arrow Terms 

Let ℒ be the set of all assertions over a given domain. Examples include state-

ments about customer’s needs, solution characteristics, methods used, pro-

gram states, test conditions, etc. These statements are assertions about the 

business domain we are dealing with.  

An Arrow Term is recursively defined as follows: 

• Every element of ℒ is an arrow term 

• Let 𝑎1, … , 𝑎𝑚 , 𝑏 be arrow terms. Then 

 {𝑎1, … , 𝑎𝑚} → 𝑏 (5) 

is also an arrow term. 

The left-hand side of an arrow term is a finite set of arrow terms and the right-

hand side is a single arrow term. This definition is recursive. The arrows 

might suggest cause-effect, not logical imply. 



The Algebra of Arrow Terms 

Denote by 𝒢(ℒ) the power set containing all Arrow Terms of the form (5). 

The formal, recursive, definition, in set-theoretical language, is given in equa-

tion (6): 

 

𝒢0(ℒ) = ℒ 

𝒢𝑛+1(ℒ) = 

𝒢𝑛(ℒ) ∪ {{𝑎1, … , 𝑎𝑚} → 𝑏|𝑎1, … , 𝑎𝑚 , 𝑏 ∈ 𝐺𝑛(𝐿), 𝑚 ∈ ℕ} 

(6) 

for 𝑛 =  0, 1, 2, … 𝒢(ℒ) is the set of all (finite and infinite) subsets of the 

union of all 𝒢𝑛(ℒ): 

 𝒢(ℒ) = ⋃  𝒢𝑛(ℒ)

𝑛∈ℕ

 (7) 

The elements of 𝒢𝑛(ℒ) are arrow terms of level 𝑛. Terms of level 0 are As-

sertions, terms of level 1 Rules. A set of rules is called Rule Set (Fehlmann, 

2016). In general, a rule set is a finite set of arrow terms. We call infinite rule 

sets a Knowledge Base. Hence, knowledge is a potentially unlimited set of 

rules sets containing rules about assertions regarding our domain. 

Combining Rule Sets 

We can combine two rule sets as follows: 

 𝑀 • 𝑁 = {𝑐|∃{𝑏1, 𝑏2, … , 𝑏𝑚} → 𝑐 ∈ 𝑀; 𝑏𝑖 ∈ 𝑁} (8) 

Arrow Term Notation 

To avoid the many set-theoretical parenthesis, the following notations, that 

we call Arrow Schemes, are applied: 

• 𝑎𝑖 for a finite set of arrow terms, 𝑖 denoting some finite indexing func-

tion for arrow terms. 

• 𝑎1 for a singleton set of arrow terms; i.e. 𝑎1 = {𝑎} where 𝑎 is an arrow 

term. 

• ∅ for the empty set, such as in the arrow term ∅ → 𝑎. 

• 𝑎𝑖 + 𝑏𝑗 for the union of two sets 𝑎𝑖 and 𝑏𝑗 of arrow terms. 

The indexing function cascades, thus 𝑎𝑖,𝑗 denotes the union of a finite number 

of 𝑚 arrow term sets 

 𝑎𝑖,𝑗 =  𝑎𝑖,1 ∪ 𝑎𝑖,2 ∪ … ∪ 𝑎𝑖,𝑗 ∪ … ∪ 𝑎𝑖,𝑚 = ⋃ 𝑎𝑖,𝑘

𝑚

𝑘=1

 (9) 

An arrow scheme always represents a finite or infinite set of arrow terms. 

With these conventions, (𝑥𝑖 → 𝑦)𝑗 denotes a rule set, i.e., a non-empty finite 

set of arrow terms, together with two indexing functions 𝑖, 𝑗. Each set has at 

least one arrow. Thus, such set is of level 1 or higher. 



With this notation, the application rule for 𝑀 and 𝑁 now reads 

 𝑀 • 𝑁 = (𝑏𝑖 → 𝑎) • 𝑏𝑖 = {𝑎|∃𝑏𝑖 → 𝑎 ∈ 𝑀; 𝑏𝑖 ⊂ 𝑁} (10) 

Arrow Terms – A Model of Combinatory Logic 

The algebra of arrow terms is a combinatory algebra and thus a model of 

combinatory logic. 

The following definitions demonstrate how arrow terms implement the com-

binators 𝐒 and 𝐊 fulfilling equations (1) and (2). 

• 𝐈 = 𝑎1 → 𝑎 is the Identification; i.e. (𝑎1 → 𝑎) • 𝑏 = 𝑏 

• 𝐊 = 𝑎1 → ∅ → 𝑎 selects the 1st argument: 

𝐊 •  𝑏 • c = (𝑏1 → ∅ → 𝑏) • 𝑏 • c = (∅ → 𝑏) • c = b 

• 𝐊𝐈 = ∅ → 𝑎1 → 𝑎 selects the 2nd argument: 

𝐊𝐈 • 𝑏 • c = (∅ → 𝑐1 → 𝑐) • 𝑏 • c = (𝑐1 → 𝑐) • 𝑐 = c 

• 𝐒 = (𝑎𝑖 → (𝑏𝑗 → 𝑐))
1

→ (𝑑𝑘 → 𝑏)𝑖 → (𝑎𝑖 + 𝑏𝑗,𝑖 → 𝑐) 

Therefore, the algebra of arrow terms is a model of combinatory logic. 

The proof that the arrow terms’ definition of 𝐒 fulfils equation (2) is some-

what more complex. The interested reader can find it in Engeler (Engeler, 

1981, p. 389). With 𝐒 and 𝐊, an abstraction operator can be constructed that 

builds new knowledge bases. This is the Lambda Theorem; it is proved along 

the same way as Barendregt’s Lambda combinator (Barendregt, 1977) and 

(Fehlmann, 1981, p. 37). 

Neural Algebra  

Engeler uses the arrow terms for a brain model (Engeler, 2019). A directed 

graph, together with a firing law at all its nodes, constitute the connective 

basis of the brain model. The model itself is built on this basis by identifying 

brain functions with parts of the firing history. Its elements may be visualized 

as a directed graph, whose nodes indicate the firing of a neuron. Cascades 

describe firing between nodes (neurons) and is represented by arrow terms 
{𝑎1, … , 𝑎𝑚} → 𝑏 where 𝑎1, … , 𝑎𝑚 are sub-cascades, while the right sub-cas-

cade 𝑏 describes the characteristic leave of its firing history graph. The Neural 

Algebra is defined as a collection of subsets of the set of cascades. With the 

application rule (10), we have an algebraic structure. 

Within this setting, it is possible to define models for reasoning and problem 

solving. However, not only flat reasoning, also the control operations. This is 

represented as a solution 𝑋 for the control problem 𝑪 • 𝑋 = 𝑋, where 𝑪 is the 

Controlling Operator. Engeler presents in an elegant way combinators that 

represent basic operations of the brain, e.g., problem solving, or balancing on 

a bike. 



Discrimination between choices, and self-reflection about how to take deci-

sions, how to address problems, as well as learning and comprehending can 

also be modeled with that approach. 

Since the number of cascades that a brain can produce is finite and limited – 

by the lifespan of the brain – solution to the fixpoint control problems turn 

out to be finite cascades. It is tempting to identify cascades with though pro-

cesses. 

The Algebra of Test Cases 

Test cases are a mapping of arrow terms onto data movement maps, see be-

low. The data movements induce a sizing valuation on this algebra by count-

ing the number of data movements executed once per test case. We rely on 

the ISO standard 19761 COSMIC (ISO/IEC 19761, 2011).  

Data Movement Maps 

Data Movement Maps are a way to model a piece of software by connecting 

objects of interest, representing functionality, persistent stores, devices, and 

other applications, based on the COSMIC standard. The connectors represent 

Data Movements. They have some resemblance to UML Sequence Diagrams 

(Bell, D., 2004) but with less detail; thus, without guards, loops, and alterna-

tive fragments. Also, sequencing is not prescribed.  

Every data movements moves a Data Group, which can be thought as a data 

record moving information from one object of interest to another. Usually, its 

uniqueness is indicated by color-filled trapezes (Figure 1). Another move of 

same data group between the same objects within a functional process lets the 

trapeze blank. The number of unique movements is called Functional Size 

according COSMIC and denoted by ‖𝔰‖, for any data movement map 𝔰 ∈ 𝔖 

where 𝔖 is a set of data movement maps (COSMIC Measurement Practices 

Committee, 2017). 

Figure 1: Sample Data Movement Map 

Functional

Processes
Persistent

Data Store
Device Other Application

1.// Data Movement moving a Data Group

Trigger

2.// Write Data into Store

3.// Start Other Application

4.// Get Results from Other Application

5.// Read Data from Store

6.// Display FInal Result

 

Data movement maps are explained in (Fehlmann, 2020, p. 27) and in more 

detail in (Fehlmann, 2016, p. 155). 



The Combinatory Algebra of Test Cases 

Arrow terms over the language of test assertions, or program states, represent 

test cases in a straightforward way. In formula (5), the left-hand side of the 

arrow term {𝑎1, … , 𝑎𝑚} → 𝑏 represents test data 𝑎1, … , 𝑎𝑚 as a sequence of 

program states, while the right-hand side 𝑏 is the expected resulting program 

state after executing the test case. Let 𝕾 be a finite set of data movement 

maps. A test case {𝑎1, … , 𝑎𝑚} → 𝑏 can be executed in 𝕾 if a data movement 

map in 𝕾 exists that transforms the program states 𝑎1, … , 𝑎𝑚 into 𝑏. 

Denote by ⋃ 𝕾 the union of all data movement maps in 𝕾. The union is de-

fined in the straightforward manner by identifying all identical objects of in-

terest within all data movement maps in 𝕾. Obviously, ⋃ 𝕾 is itself a data 

movement map. It represents the program under test, or more exactly, the part 

of the program that is covered by test cases, executable in 𝕾. Note that when 

combining executable test cases from program ⋃ 𝕾 using equation (10), the 

result is also executable in ⋃ 𝕾. 

Test Automation  

The arrow terms serve primarily as a grammar for test cases, but the proper-

ties of a combinatory algebra allow for much more. Test can be combined, 

using equation (8) or any other combinator. This allows to generate as many 

test cases as we want and need for achieving full test coverage. 

Therefore, it is no longer an excuse for not testing large and complex systems 

that the scarcity of resources, especially proficient software testers, do not 

allow for a full test, testing all of the software even for large systems such as 

today’s trainsets, or Advanced Driving Assistance Systems (ADAS), or auton-

omous vehicles, in case they ever will hit our roads. 

It is noteworthy that programmers who want to set up test concatenation 

𝑀 • 𝑁 for automatic testing, need access to the test cases in 𝑁 that provide 

the responses needed for 𝑀. Otherwise, combining tests is unsafe or cannot 

be automated. The equation (8) does exactly this, providing the existence of 

an arrow term means that a rule is available that tells the programmer, which 

test case to take. In other words, combination of tests also traces the history 

how these tests have emerged. This allows to validate combined tests. 

This interpretation of the logical existence means that we apply here the in-

tuitionistic variant of the axiom of choice. Programmers, and even more: test-

ers, would reject combining tests with equation (8) unless we silently apply 

the intuitionistic, stronger form of the AC. 

Keeping the Number of Generated Test Cases Low 

However, a testing environment that produces test cases without end is not 

very practical either. It is therefore necessary to have a selection algorithm 

that allows to direct the test case generator towards the relevant tests.  

This can be achieved by means of Transfer Functions, which are in detail 

explained in Fehlmann (Fehlmann, 2016) – that map the selection of test 

cases back onto customer values.  



In this paper the so-called linear multiple-response transfer functions are of 

special interest. Such transfer functions are defined by equations of the form 

 𝒚 = 𝑨𝒙 (11) 

where 𝒚 is the predefined goal profile, 𝑨 as transfer function is a matrix and 

hence a linear transfer function which measures the effects of test cases in 

view of the user stories that represent the customer’s needs and values. 𝒙 is 

the vector which describes the yet to be determined, initially unknown, im-

portance of the test cases. Clearly, 𝒙 depends on the matrix 𝑨 and the goal 

profile 𝒚   

However, since test cases are what we are looking for, the function 𝑨 is not 

given, either. It depends on the test cases – preexisting and generated – that 

we use in our test suite. In practice, we start with a rule set – Test Cases – that 

can be grouped in Test Stories and extended as needed; see (Fehlmann, 2020). 

Test stories and User Stories allow representing the function 𝑨 as a matrix. 

The user stories represent the requirements, based on customer needs. 

Figure 2: Equation 𝒚 = 𝑨𝒙 as a Matrix between User Stories and Test Stories 
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The goal vector 𝒚 is labelled Goal Test Coverage in Figure 2; the Achieved 

Result is the product of matrix 𝑨 and vector 𝒙, at the bottom of the matrix. 

The vector 𝒙 is widely unknown at the time when tests are designed. Not even 

its dimension – the number of tests – is obvious, nor the topics that merit 

being tested. Thus, there are many ways of designing a valid test strategy; 

however, the convergence gap (see equation (14) below) must remain small. 



What Number to Put into the Matrix Cells? 

The number in the matrix cells represent the total test size that correlated be-

tween the respective user story and test story. This Cell Test Size is the num-

ber of data movements within all test cases in the specific Test Story that 

pertain to the respective user story. The main problem is how to find a vector 

𝒚 representing qualitative or quantitative user needs, as a profile. A profile is 

a vector in some space of user needs with Euclidian length = 1. Agile teams 

have a process to prioritize user stories; however, they usually do not care 

about representing priorities as a profile vector. 

Finding 𝑨 and 𝒙 in equation (11) is not trivial. However, in practice, the even 

bigger problem is that the goal vector 𝒚 is often unknown. The needs of the 

customer, or user, in view of testing is nothing that development teams know 

automatically, because it involves safety, privacy and security in addition to 

functionality. We need a profile for all explicit and implicit requirements. 

Formally, the cell numbers are constructed as follows: 

• Test stories are a collection of rule sets (test cases) that share a common 

purpose. Let 𝒕 ∈ 𝓢 be a test story, member of some rule set 𝓢. 

• For every test story 𝒕, there is a mapping  

 𝒎𝒂𝒑(𝒕) ∈ ⋃ 𝕾 (12) 

where ⋃ 𝕾 is the set of all data movement maps within a software pro-

gram, as before. 

• Furthermore, there is a choice function ‖𝒎𝒂𝒑(𝒕)‖𝒇 identifying which 

data movements pertain to some specific user story 𝒇 and counting 

them. 

• For each cell, we start with a rule set of test cases 𝒕𝑖,𝑗 ∈ 𝓢𝑗, where 𝑖, 𝑗 

are the respective cell indices of the matrix 𝑨 and 𝓢𝑗is the respective 

test story in that matrix. then 

 ∑‖𝒎𝒂𝒑(𝒕𝑖,𝑗)‖
𝒇
 (13) 

counts for each test case how many data movements pertain to the re-

spective user story. The summation runs over all test cases 𝒕𝑖,𝑗 ∈ 𝓢𝑗 for 

each matrix cell with index 𝑖, 𝑗. 

A data movement may appear in many test cases and pertain to more than a 

single user story. We count the total amount of times that a data movement is 

used, not the data movements as for test size. 

Finding the Optimum Test Cases to be Generated 

There exists a family of methods – the Analytic Hierarchy Process (AHP) 

(Saaty, 2003) and Quality Function Deployment (QFD), explained in the se-

ries of international standards 16355 (ISO 16355-1:2015, 2015) that allow to 

derive such profile vectors in a professional and repeatable manner. Examples 

are available in (Fehlmann, 2020). 



The idea is simple: if we can focus on test cases that pertain to customer 

needs, we have an instrument that helps us selecting those test cases that best 

extend testing towards a full coverage of everything that has value for the 

customer. Thus, we must define a choice function that achieves this.  

Kranich (Fehlmann & Kranich, 2020) has tried to find such a choice function, 

using algebraic methods to define a sensitivity analysis procedure for any lin-

ear matrix with Eigenvector solutions, such as in QFD. However, the problem 

is complex, and possibly unsolvable. There may be approximation methods 

that can be used in practice. 

The goal is to find a vector 𝒙 and a matrix 𝑨 such that 

 ‖𝒚 − 𝑨𝒙‖ < 𝜺 (14) 

where ‖… ‖ denotes the Euclidean norm for vectors, called the Convergence 

Gap, and 𝜺 is the upper limit for an acceptable convergence gap. This has to 

do with the axiom of choice AC for the existence of real, irregular numbers in 

ℝ. Finding vector 𝒙 and a matrix 𝑨 is an iterative process. Finding test cases 

becomes equivalent to proving that a certain sequence of real numbers con-

verges. Thus, testing is a model of combinatorial algebra.  

Using the combination rule (10), it is possible to generate the set of all sensi-

ble test cases. Together with the convergence gap as a metric, or hash func-

tion, the formula (14) allows to select those test cases that are relevant, and 

therefore limit the growth rate for newly generated test cases. 

The Internet of Things (IoT) as a Simple Model 

Since translating the theoretical background in practice is probably not so 

easy, we mention a short, simple example from IoT. The problem of generat-

ing new test cases is made considerably easier by assuming that adding an-

other IoT “thing” adds more data movements that need to be included in tests. 

The example is a simple search app that looks for items in a database: 

Figure 3: Simple Search App 

User Search Process Database

1.// Search Criteria

Trigger

2.// Get Result

3.// Show Result

4.// Nothing Found

5.// Show Error Message

 
 

The functional size of this app is the number of data movements between 

objects of interest, according COSMIC (COSMIC Measurement Practices 

Committee, 2017). Now we add IoT devices – e.g., a sensor and an actuator 

that interact with the environment: 



Figure 4: IoT Search Concert App 

User Search Process Database Sensor Data Collection Actuator Response

1.// Search Criteria

Search

2.// Get Result

3.// Show Result

4.// Nothing Found

5.// Show Error Message

6.// Enable Sensors

Sensors

7.// Switch Sensor on

8.// Sensor Data

9.// Data Recording

10.// Sensor Statistics

11.// Dashboard

12.// Enable Actuators

Actuators

13.// Switch Actuators on

14.// Read Sensor Data

15.// Calculate Response

16.// Acknowledge Task

17.// Error Message

18.// Record Task

19.// Task Statistics

20.// Dashboard

21.// Error Messages

 

The IoT search concert still focuses on search, despite the additional func-

tionalities. Thus, user needs for the two programs are identical. Consequently, 

the user stories are similar, although the user story priority profiles differ: 

Figure 5: User Stories for Simple Search 

User Stories Topics As a … I want to … such that … so that … Weight Profile

 1) Q001 Search Data Search Data App User find data matching my search criteria It's attractive I know when data exists 32% 0.55

2) Q002 Answer Questions Search Data App User know whether some data exists answers are correct I know when data doesn't exist 40% 0.68

3) Q003 Keep Data Safe Search Data App User make sure my data is safe it cannot be deleted I can retrieve it if necessary 29% 0.49

Priority

 

Figure 6: User Stories for IoT Search Concert 

User Stories Topics As a … I want to … such that … so that … Weight Profile

 1) Q001 Search Data IoT Data App User find data matching my sensor data or search string I can use it I know when data exists 28% 0.49

2) Q002 Answer Questions IoT Data App User know whether some data or explanation exists exists I can create it I know when data doesn't exist 37% 0.64

3) Q003 Keep Data Safe IoT Data App User make sure my data is safe and repeatable I can use actuators to protect items I can retrieve it if necessary 35% 0.60

Priority

 

As before, the choice functions ‖𝒎𝒂𝒑(𝒕)‖𝒇 define which data movements 

pertain to which user story. This allows constructing test coverage matrices 

for both, the Simple Search, and the IoT Search Concert. The test stories re-

main the same for both apps; the test cases for Simple Search also apply for 

IoT Search Concert.  

The IoT Search Concert needs considerably more test cases, to cover addi-

tional sensor and actuator functionality. The growth in test size (= total num-

ber of data movements in test cases according COSMIC, see above) is con-

siderably. Test size increases from 46 to 235.  



These test cases can easily be constructed by concatenating unit tests for the 

IoT devices with the test cases already in place for the Simple Search App, 

using equation (10). 

Obviously, the number of possible combinations grows exponentially and 

would soon exceed all available test capacity. This growth can be kept under 

control by selecting only those new test cases that keep the convergence gap 

of the test coverage matrix small enough, solving 𝒚 = 𝑨𝒙: 

Figure 7: Simple Search Test Coverage  Figure 8: IoT Search Test Coverage 
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For Artificial Intelligence (AI), such search algorithms are typical methods. 

Using the convergence gap as a hash function for selecting meaningful test 

cases limits the growth of the search tree for test cases. For more details, see 

(Fehlmann, 2020). 

The Axiom of Choice and Artificial Intelligence (AI) 

The misconception about computability of non-measurable structures – such 

as real numbers ℝ – is also responsible for a very actual problem: some peo-

ple believe that AI can solve problems; however, AI always approximates 

solving a problem. If AI comes without anything resembling the convergence 

gap it is most probably useless. You cannot rely on AI decisions without 

measuring accuracy. 

Nevertheless, testing AI is possible, and not too difficult (Fehlmann & 

Kranich, 2019). However, it cannot test the neuronal network – e.g., the Sup-

port Vector Machine (Gunn, 1998) – itself  but only its behavior in certain 

test situations. This is also explaining intuitively why testing never can prove 

anything. Testing software is always an approximation by a finite number of 

test cases, be it AI or traditional algorithmic programming. We always need 

a constructive choice function that selects relevant test cases for the approxi-

mation. 

This suggests also that testing without a convergence gap is deceptive and 

potentially misleading. 

Testing AI (Fehlmann & Kranich, 2019) is done by construction of data 

movement maps that describe the expected behavior. These data movement 



maps do not represent the program code; rather the behavior expected by the 

user. 

The choice function selecting relevant test cases is therefore relevant. It is all 

but obvious which to choose, but it makes testing AI a matter of understand-

ing its expectations in an intelligent machine. To believe that AI is intelligent 

by itself is like believing that the Banach-Tarski sphere can be split into two.  

Open Questions 

Besides sensitivity analysis for matrices, there is one very stringent question 

open: can we define combinators that help us in generating meaningful addi-

tional tests? Like what Engeler did for neural networks?  

Furthermore, is there a connection between sensitivity analysis and such com-

binators? Both questions may not only lead to practical solutions, but also 

interesting theoretical insight in the role of the axiom of choice for software 

engineering. 

Conclusions 

Computer science uses choice functions only in a constructive way; existence 

of a choice always means existence of an algorithm that does the choice. This 

is counter-intuitive to human perception of the world but reflect the stand-

point of mathematical logic. 

Arrow terms are an extremely rich structure for representing quite different 

structures such as the way how the brain thinks, the way how to focus on 

customer needs by Quality Function Deployment (QFD), see (Fehlmann, 

2002), and testing of complex, software-intense systems with thousands of 

Embedded Control Units (ECU). 
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