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Abstract—For some years, Statistical Process Controls (SPC)
techniques such as traditional Shewhart control charts add value
to monitor and to control the Software Development Process
(SDP) efficiently. Nonetheless, the application of Shewhart control
charts to the SDP involves a considerable problem, since the avail-
ability of a sufficiently large set of observations is essential when
constructing traditional control charts. Especially at the start-up
of each SDP phase such a set cannot be provided. To remedy this
problem, Q control charts widely used when monitoring short-
run manufacturing processes have been introduced successfully.
This paper focuses on the predictive property of Exponentially
Weighted Moving Average (EWMA) Q control charts and investi-
gates whether the predictive property is attractive for monitoring
and controlling the SDP. Results of initial experiments are also
reported.
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I. INTRODUCTION

Shewhart control charts, introduced by Shewhart [34] in the
1920’s and further investigated by W. E. Deming [6] (see also Thomp-
son and Koronacki [36]), are a highly valuable and well accepted Sta-
tistical Process Control (SPC) tool for the monitoring, controlling, and
systematic improvement of mass production processes manufacturing
identical parts, see also standard SPC textbooks such as Montgomery
[25], Qiu [26], and Ryan [33] for further details. Shewhart control
charts are mainly applied to investigate and understand the variation
of a considered process. In view of the fundamental equation of SPC,
the variation of the considered process is equal to the natural cause
process variation plus the assignable cause process variation. Natural
or common cause variation is unpreventable inherent to any process
and can only be reduced by modifying the process itself, whereas
assignable or special cause variation originates from external process
events which make the process in-stable or out-of-control and, when
detected, should be eliminated promptly to stabilize the process.

The Software Development Process (SPD) is evidently not a mass
production process, since an actually developed software artifact is in
general not identical to other previously developed software artifacts.
Hence, a sufficiently large set of observations is not available which
is required for the construction of Shewhart control charts. However,
Florac and Carleton [10] provide guidelines how to monitor and
control the SDP by means of Shewhart control charts.

But how to monitor and control the SDP when only a small set
of individual observations such as defects at the start-up stage of
testing is available? Chang and Tong [2] were the first who apply
short-run statistical process control techniques along with associated
short-run control charts, also termed self-starting control charts, to
the monitoring of the SDP, see also Fehlmann and Kranich [8].

In particular, Chang and Tong [2] recommend to utilize Q control
charts introduced by Quesenberry [27], [30]. These control charts are
based on standardized, normally distributed Q-Statistics. In contrast
to classic Shewhart control charts, Q control charts feature the notable
property that they have constant control limits. This property enables,
for instance, a visualization of the monitored indivudual observations
of different process characteristics such as Chillarege’s [3] Orthogonal
Defect Classification (ODC) categorized defects in exactly one control
chart.

In order to identify an out-of-control situation in the course
of a process run, a set of decision rules is generally applied, see
e.g. Hoyer and Ellis [17]. The main purpose of such rules is to
signal a potential out-of-control situation before the actual in-control
process reveals in fact an out-of-control event. Complementary to
some of the decision rules or as an alternative to Shewhart control
charts, Exponential Weighted Moving Average (EWMA) control
charts which have individual observations as input can be utilized.
Contrary to Shewhart control charts which can only detect large shifts
in the observations, applying EWMA control charts is recommended
when small shifts in the observations are to be identified, see e.g.
Hunter [18], Montgomery [25], Qiu [26], or Ryan [33].

Quesenberry [28], [30] points out that the values of the various
types of Q-Statistics can also serve as input to EWMA control charts
resulting in EWMA Q control charts. This type of control charts is
described in deatil and investigated by Fehlmann and Kranich [?] in
view of monitoring and controlling the software development process.
The focus of this paper is to analyze whether the predictive property
of EWMA Q control charts is an attractive control mechanism in the
context of the software development process.

The paper is organized as follows. Basic principles of Q-Statistics
and Q control charts are described in Section II. The background
of EWMA control charts along with an enhancement is given in
Section III. EWMA Q control charts are introduced in Section IV.
Section V shows how EWMA Q control charts can be utilized to
control the software development process by means of forecasting.
The results of this section are applied to an example in Section VI in
order to illustrate the attractiveness of forecasting future individual
observations. Finally, conclusions are pointed out in Section VII.

II. Q-STATISTICS AND Q CONTROL CHARTS

In a sequence of papers Quesenberry [27], [28], [30] introduces
normalized statistics, the Q-Statistics, in order to construct Shewhart
type control charts for individual observations from, for instance, a
normal distribution when the process parameters are unknown at the
start-up of the considered process.

A. Q-Statistics from Individual Observations

Quesenberry [27], [28], [30] considers a sequence of first k inde-
pendent, identically and normally distributed (i. i. d.) random variables



{x1, x2, . . . , xk} with mean µ and variance σ2, i.e. {xj} ∼ N (µ, σ2)
with 1 ≤ j ≤ k. According to the parameters µ and σ2 Quesenberry
[27], [28], [30] distinguishes four cases:

(1) Case KK: µ = µ0 and σ = σ0 are known (k = 1, 2, . . .)

Qk(xk) =
xk − µ0

σ0
. (1)

(2) Case UK: µ is unknown, σ = σ0 is known (k = 2, 3, . . . )

Qk(xk) =

√
k − 1

k

(
xk − xk−1

σ0

)
, (2)

with

xk =
1

k

k∑
j=1

xk. (3)

(3) Case KU: µ = µ0 is known, σ is unknown (k = 2, 3, . . . )

Qk(xk) = Φ−1

{
Gk−1

(
xk − µ0

sk−1

)}
, (4)

where

s2k =
1

k − 1

k∑
j=1

(xj − xk)2 . (5)

(4) Case UU: µ and σ unknown (k = 3, 4, . . . )

Qk(xk) = Φ−1

{
Gk−2

[√
k − 1

k

(
xk − xk−1

sk−1

)]}
, (6)

where xk−1 and sk−1 are defined in (3) and (5), respectively.

In (4) and in (6), G(·) denotes the Student t cumulative distribution
function with k − 1 resp. k − 2 degrees of freedom and Φ−1 the
inverse of the standard normal cumulative distribution function. For
further details see Chang and Tong [2], Fehlmann and Kranich [8],
Quesenberry [27], [30], Zantek [40], and Zantek and Nestler [41].
Obviously, Case UU is the most important and occurring case in
practice and is therefore the only case investigated in this paper.

With respect to (6), Quesenberry [30] recommends to update xk
and s2k each time a new observation is available by means of the
following sequential updating formulas instead of calculating xk and
s2k each time from scratch according to (3) and (5), respectivley:

(a) The sample mean xk can be calculated sequentially by

xk =
1

k

k∑
j=1

xk =

(
1− 1

k

)
xk−1 +

1

k
xk

= xk−1 +
1

k
(xk − xk−1) ,

(7)

for k ≥ 2 and with x1 = x1.
(b) The sample variance s2k can be computed sequentially by

s2k =
1

k − 1

k∑
j=1

(xj − xk)2

=

(
k − 2

k − 1

)
s2k−1 +

1

k
(xk − xk−1)2 ,

(8)

for k ≥ 3 and with

s22 =
1

2
(x2 − x1)2 =

1

2
(x2 − x1)2 .

Note that the formulas (7) and (8) are numerically more stable than
the fundamental formulas (3) and (5), respectively.

B. Q Control Charts

Quesenberry [27], and Zantek and Nestler [41] prove that each
Q-Statistic Qk(xk) in (1), (2), (4), and (6), respectively, produce
a sequence of independent N (0, 1) distributed random variables.
Consequently, the 3σ upper control limit (UCL), the center line (CL),
and the 3σ lower control limit (LCL) of a Q control chart are fixed:

UCL = +3, CL = 0, LCL = −3. (9)

It is well known that traditional Shewhart control charts help to decide
whether a considered process is under statistical control or in-control
by using certain run rules or tests. A set of such run rules are listed in
e.g. Champ et al. [1], Florac and Carleton [10], Hoyer and Ellis [17],
and Montgomery [25]. Quesenberry [28] applies a subset of that run
rules to Q control charts. For instance, one such (simple) rule is the
1-of-1 or outlier test, i.e., the process signals an outlier observation, if
Qk(xk) < LCL or Qk(xk) > UCL. Quesenberry [29] proves that
Q control charts are optimal to detect outliers.

The occurrence of an outlier generally requires some action,
since an outlier may strongly impact the sequence of parameter
estimates by masking the outlier effect when further observations
are taken, compare (7) and (8), respectively. Excluding an outlier
from subsequent parameter estimates the sensitivity to detect further
outliers will be improved. According to Q control charts based on
the Q-Statistic (6) an effective way to automatically build a ”new” Q
control chart from scratch is to eliminate the outlier and all previous
observations from subsequent calculations of the parameter estimates.
Based on the example of Florac and Carleton [10, pp. 151], Figure 1
and Figure 2 illustrate the observations sequence without and with
eliminating outliers automatically.
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Fig. 1. Observations sequence without outlier elimination
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Fig. 2. Observations sequence with outliers elimination

In Figure 1 and Figure 2 an outlier is marked at day 4, and in
Figure 2 an additional outlier at day 13. In addition, Figure 2 illustrates
that each time an outlier has been detected subsequent Q-Statistic data
points are calculated from scratch by means of (6).



A benefit of applying Q control charts is that the behavior of
various process characteristics can be visualized in exactly one control
chart, see Figure 3.
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Fig. 3. Q control chart of four process characteristics

Such a control chart gives more insight into the process behavior.
For instance, in Figure 3 the peaks of the aggregated number of
defects are obviously caused by out-of-control events of the further
three considered defect types.

III. EWMA CONTROL CHARTS

Exponentially Weighted Moving Average (EWMA) control charts
are an alternative to traditional Shewhart type control charts, see,
e.g. Hunter [18], Montgomery [25], Qiu [26], or Ryan [33]. EWMA
control charts are based on a time series model and thereby on a
transfer function model, see e.g. Fehlmann and Kranich [7]. Hence,
EWMA control charts hold the predictive characteristic of a transfer
function and thereby may be applied to control and monitor a process.

A. EWMA Basics

EWMA control charts are based on a statistic of the form

zk = λxk + (1− λ)zk−1, k ≥ 1, (10)

where λ ∈ (0, 1] is an appropriately chosen weighting factor.
Obviously, a λ ∈ (0, 0.5) assigns more weight to the previous zk−1 as
to an actual observation xk. If λ ∈ (0.5, 1), less weight is assigned to
zk−1 and more to xk. An EWMA control chart is simply a Shewhart
control chart when λ = 1.

Apparently, the statistic (10) reflects that EWMA is a weighted
average of all previous observations x1, x2, . . . , xk−1 and the current
observation xk. This implies that an EWMA control chart can be
constructed, even though the distribution function of the observations
is not known.

In order to specify the EWMA control chart limits the mean and
variance of the statistic (10) have to be derived. This is accomplished
by the recursive form of (10):

zk = λ

k−1∑
j=0

(1− λ)jxk−j + (1− λ)kz0, (11)

where the weights λ(1−λ)j geometrically decrease for increasing j.

If all the observations xj (1 ≤ j ≤ k) are independent and
identically distributed with mean µx and variance σ2

x, the mean of
zk in (10) is equal to

µzk = µxλ

k−1∑
j=0

(1− λ)j + (1− λ)kµz0 = µx, (12)

with z0 = µx and the variance of the EWMA statistic zk is

σ2
zk = σ2

x

(
λ2

k−1∑
j=0

(1− λ)2j
)

+ (1− λ)2kσ2
z0 . (13)

In view of σ2
z0 = σ2

µx
= 0, the variance of zk is equal to

σ2
zk =

λ

2− λ

(
1− (1− λ)2k

)
σ2
x, (14)

with

lim
k→∞

σ2
zk =

λ

2− λσ
2
x. (15)

For more derivation details of µzk in (12) and of σ2
zk in (14), see

e.g. Montgomery [25], and Qiu [26].

Hence, the center line CL of an EWMA control chart is equal to
µx and the EWMA control chart limits are of the form

µx ± ρ σzk = µx ± ρ σx
√

λ

2− λ (1− (1− λ)2k), (16)

where ρ > 0 is chosen appropriately. Montgomery [25] points out that
(λ, ρ) ∈ {(0.05, 2.615), (0.10, 2.814), (0.20, 2.962), (0.25, 2.998)}
works well in practice, see likewise Lucas and Saccucci [24], and
Qiu [26]. Evidently, a considered process is in-control, when zk in
(10) is located between the EWMA control chart limits (16).

B. An EWMA FIR Enhancement

In order to calculate the EWMA control chart limits in (16),
the limiting variance given in (15) is often used in practice. A
small λ motivates this approach since the variance of zk in (13)
slowly converges to its limiting variance (15) because of the slow
convergence of (1− (1−λ)2k)→ 1. Taking the limiting variance of
zk impacts the start-up phase of a process since the sensitivity of an
EWMA control chart to detect an out-of-control event in that phase
gets lost.

The Fast Initial Response (FIR) feature compensates this problem,
see e.g. Chiu [4], Haq, Brown and Moltchanova [13], Knoth [23],
Rhoads, Montgomery and Mastrangelo [32], and Steiner [35]. The
FIR feature narrows the EWMA control chart limits, at least in the
course of the start-up phase of a process, and thereby increases the
sensitivity of an EWMA control chart to detect an out-of-control event
in that phase. The general FIR feature is defined by

FIRadj =
(

1− (1− f)1+a(k−1)
)b
. (17)

If b = 1, FIRadj in (17) reflects Steiner’s FIR adjustment [35],
whereas the FIR adjustment of Haq, Brown and Moltchanova [13]
results from setting b = 1+(1/k). Thus the adjusted EWMA control
chart limits are of the form

µx ± ρ× FIRadj × σx
√
λ/(2− λ). (18)

According to (17), the parameter a is chosen (or calculated) such that
FIRadj has minor impact on the EWMA control chart limits (18) after
a pre-defined (observation) index k = k0, i.e., for indexes k > k0
FIRadj ≈ 1 is required. For k = 1, the parameter f ∈ (0, 1] reflects
the proportion of the distance the FIR EWMA control limits (18)
have from the center line to the limiting FIR EWMA control limits
µx ± ρ × σx

√
λ/(2− λ). Steiner [35] recommends to set a = 0.3

and f = 0.5 in general.



IV. EWMA Q CONTROL CHARTS

Replacing xk in (10) with a Q-Statistic Qk(xk) defined in (1),
(2), (4), or (6), results in the statistic

zk = λQk(xk) + (1− λ)zk−1, k ≥ 1, (19)

where λ ∈ (0, 1] is the appropriately chosen weighting factor. Since
the initial value of zk highly impacts the calculation of all subsequent
values, zk−1 is set to the starting value of the considered Q-Statistic
Qk(xk). For instance, according to Case UU in (6) the initial value
of the sequence zk is z3 = Q3(x3).

As mentioned in Section II, the Q-Statistics Qk(xk) are indepen-
dent and N (0, 1) distributed. Hence, by (12) µzk = µQk(xk) = 0,
and in view of (14)

σ2
Qk(xk)

=
λ

2− λ

(
1− (1− λ)2k

)
. (20)

Then the EWMA Q control chart limits are given by

±ρ
√

λ

2− λ (1− (1− λ)2k), (21)

compare (16), and the FIR adjusted EWMA Q control chart limits
are of the form

±ρ× FIRadj ×
√
λ/(2− λ) (22)

in view of (18).

In order to assure a good EWMA Q control chart performance,
λ = 0.25 and ρ = 2.998 is chosen resulting in EWMA Q control
chart limits of ±1.133, or in ±1.133 × FIRadj . Thus |zk| > 1.133
(or, |zk| > 1.133 × FIRadj) indicates an out-of-control situation of
a process under consideration. Figure 4 depicts an EWMA Q control
chart according to the EWMA Q-Statistic (19) and the control limits
(16) with µx = 0 and σx = 1. Since these control limits are tighter
than those in Figure 1 two additional out-of-control events at day 5
and 6 are detected. Note that the non-connected points in Figure 4
represent the EWMA Q-Statistic values.
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Fig. 4. An EWMA Q control chart (based on Eq. (16))

As mentioned in Section III-B, the sensitivity to detect out-of-
control events can be increased at the start-up phase of a process, if
the FIR enhancement defined in (17) is taken into account. Figure 5
and Figure 6 visualize the FIR enhancements of Steiner [35] and Haq,
Brown and Moltchanova [13], respectively, with a = 0.3 and f = 0.5.

In both cases one additional out-of-control event at day 7 is
detected.

Analog to the context of Figure 2, Figure 7 illustrates the modified
FIR adjusted EWMA Q control chart when the out-of-control event
at day 4 in Figure 6 is eliminated automatically.
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Fig. 5. A FIR adjusted EWMA Q control chart (Steiner [35])
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Fig. 6. A modified FIR adjusted EWMA Q control chart (Haq et al. [13])

Analog to Figure 2, the elimination of the out-of-control event
at day 4 initiates the calculation of a new sequence of EWMA Q-
Statistic values up to day 15 at which another out-of-control event
occurs.

V. Q-STATISTICS PREDICTIONS BASED ON EWMA

Prediction or forecasting is a very important function in many
business areas, see e.g. Fildes et al. [9]. The goal of forecasting
is to predict values of a time series as reliable as possible in the
(near) future. One of the most widely applied forecasting method
that continually updates a forecast is exponential smoothing, see,
for instance, Fildes et al. [9], Gardner [11], [12], Hyndman and
Athanasopoulos [19], or Hyndman et al. [22].

A. Q-Statistics and Simple Exponential Smoothing

Simple exponential smoothing is appropriate for short-term pre-
diction, e.g. for the forecast of the next, one-step-ahead time series
value.

The statistic (19) can be rewritten as

zk = zk−1 + λ (Qk(xk)− zk−1), λ ∈ (0, 1), (23)

where zk−1 is interpreted as the forecast or prediction of the Q-
Statistic Qk(xk) for iteration k. The difference Qk(xk) − zk−1 is
termed the forecast error at iteration k. Therefore, the error correction
form of (23) is equal to

zk = zk−1 + λ ek with ek = Qk(xk)− zk−1. (24)

In order to express that (23) resp. (24) represents a prediction or
forecast, an alternative representation of zk in (24) is

zk+1 = zk + λ ek with ek = Qk(xk)− zk, λ ∈ (0, 1), (25)
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Fig. 7. Modified FIR EWMA Q control chart with outliers elimination

reflecting that a tomorrow’s predicted value zk+1 is equal to the
today’s predicted value zk plus the smoothing parameter λ times the
today’s prediction error ek. This way to calculate EWMA based one-
step-ahead forecasts is termed simple or single exponential smoothing
due to the presence of the single smoothing parameter λ in (25).

The value of the parameter λ has a significant impact on smooth-
ing the predicted values. Obviously, a (too) small value of λ entails
that the new forecast zk+1 is quite equal to the previous forecast
zk, a (too) large λ focuses on the prediction error ek. Thus a natural
question arises: How to determine λ in order to get a reliable forecast
effect? A simple trial and error approach seeks an (approximately)
optimal λ that minimizes the sum of squared prediction errors

∑
i e

2
i .

This can be accomplished by replacing λ with different values in (25),
by calculating the corresponding sums of squared prediction errors
for each value of λ and finally by selecting that value of λ which
yields the minimum value of the sum. An alternative approach is to
solve the quadratic programming problem min

∑
i e

2
i subject to λ by

means of a mathematical programming software package.

Another alternative approach is to utilize the R Statistical Com-
puting Environment [31], in particular the standard package stats,
or the package forecast developed by Hyndman and Khandakar
[20]. Both packages implement the forecast procedure described in
Holt [15] and enhanced by Winters [39] to determine a solution to
(25).

B. Q-Statistics and Double Exponential Smoothing

In general, time series data exhibit random variations, but in some
cases the data may show a shift to higher or lower values over a certain
time period. In this case a trend pattern exists. A trend reflects the
long-term direction of the considered observations series.

According to the Q control chart run rules (see Section II-B), a
positive trend in the observations exists if (at least) six consecutive out
of the k actual observations reveal a monotone increasing pattern, i.e.
if Qj−5(xj−5) < Qj−4(xj−4) < · · · < Qj(xj) with j ≤ k, see e.g.
Hoyer and Ellis [17, Rule 5]. A negative trend is defined analogously
by a monotone decreasing pattern. In exponential smoothing a trend
is of the form

tk = ν(zk − zk−1) + (1− ν)tk−1, (26)

whereby ν ∈ (0, 1) is a smoothing parameter. Obviously, the term tk
defines the local linear trend of an observation series for each k ≥ 1.
Alike the parameter λ in Section V-A, the value of ν impacts trend.
In case of a small value of ν the new trend tk is nearly equal to the
previous one tk−1, i.e., the difference zk − zk−1 in (26) affects the
trend in a minor extent.

Incorporating the trend component (26) into the statistic (19)
results in

zk = λQk(xk) + (1− λ)(zk−1 + tk−1), λ ∈ (0, 1) (27)

which is equivalent to

zk = zk−1 + tk−1 + λ (ek), λ ∈ (0, 1), (28)

with ek = Qk(xk) − zk−1 − tk−1 denotes the prediction error
according to the trend, compare (25).

In view of (28) and the parameters λ and ν explicitly and
implicitly given therein, the procedure to calculate a forecast or
prediction zk in (28) is termed double exponential smoothing. As in
Section V-A the R implementation of Holt’s procedure [15] is applied
to determine the smoothing parameters λ and ν.

C. Measuring the Accuracy of Q-Statistics Predictions

Evidently, in order to decide whether an actual prediction calcu-
lated by (25) or by (28) is acceptable or not, some measure of forecast
accuracy is required. A crucial component of some underlying metrics
is the mean of the (absolute or squared) one-step-ahead forecast errors
ej , 1 ≤ j ≤ k, see e.g. Hyndman et al. [22].

For instance, the tracking signal TSk is in general defined by

TSk =

∑k
j=1 ej

1
k

∑k
j=1 |ej |

. (29)

TSk sets the bias in relation to the average absolut forecast error
and is recalculated each time a new individual observation has been
made. Ideally, the various tracking signal values TSj , 1 ≤ j ≤ k,
fluctuate around zero within user-defined acceptable control limits,
e.g. ±4. If a tracking signal TSj exceeds the control limits, then the
prediction error may be nonrandom and the actual prediction is no
longer beneficial. In this case, reset the forecasting and re-start.

The Mean Absolute Scaled Error (MASE) prediction accuracy
measure of Hyndman and Koehler [21] checks the mean of the abso-
lute forecast errors ej , 1 ≤ j ≤ k against that of the absolute naı̈ve
one step forecast errors Qj(xj)−Qj−1(xj−1) for 2 ≤ j ≤ k − 1:

MASEk =
1
k

∑k
j=1 |ej |

1
k−1

∑k
j=2 |Qj(xj)−Qj−1(xj−1)|

. (30)

Clearly, if MASEk < 1, then the forecast is better than the average
naı̈ve forecast, and the forecast is worser than the average naı̈ve
forecast when MASEk > 1. In addition, each MASEk is undefined
when all differences |Qj(xj)−Qj−1(xj−1)| = 0 for 2 ≤ j ≤ k.

Another forecast accuracy measure was proposed by the Dutch
econometrician Henri Theil who mainly studied the inequality distri-
bution of income and asset. Related to times series the Theil accuracy
measure Uk is defined by

Uk =

√√√√ ∑k
j=1 e

2
j∑k

j=2(Qj(xj)−Qj−1(xj−1))2
. (31)

Like MASEk in (30) Theil’s measure Uk quantifies how well the series
of forecast errors compares to the corresponding series of naı̈ve one
step forecast errors. Hence, if Uk < 1, then the forecast is better than
the naı̈ve one step forecast. The forecast is worser, when Uk > 1.

Trigg and Leach [38] modify (29) by replacing the prediction
errors ej and |ej | with the corresponding smoothed prediction errors
resulting in the smoothed error tracking signal defined by

SETSk =
ẽk
ãk

=
γek + (1− γ)ẽk−1

γ|ek|+ (1− γ)ãk−1
. (32)



Evidently, SETSk ∈ [−1,+1]. With respect to Section III, the limiting
variance of SETSk is equal to c × (γ/(2 − γ)), where c ≈ 1.5 in
general. In order to determine a value of γ, Trigg [37], and Trigg
and Leach [38] propose to select a value of γ ∈ [0.1, 0.3]. Then
the smoothed error tracking signal SETSk in (32) indicates an out-
of-control forecast, when SETSk exceeds one of the corresponding
control limits. For instance, when γ = 0.1 the control limits are
±0.51, see Trigg [37]. When SETSk is in-control, Trigg and Leach
[38] propose to set λ = |SETSk| in (23) and (28), respectively.
When SETSk is out-of-control, Trigg [37] recommends to check the
forecast in order to detect a potential assignable cause according to
the transformed Qk(xk) or to the real observation xk.

A problem arises from the tracking signal given in (32), when ek
is a perfect prediction, i.e. when ek = 0. In this case, STSk = STSk−1.
In view of (30), this problem is solved when the denominator in (32)
is replaced by a simple exponentially smoothing expression qk which
consists of the difference between the actual observation Qk(xk) and
its predecessor Qk−1(xk−1), i.e. qk = Qk(xk)−Qk−1(xk−1). Then
the new smoothed error tracking signal is

SETSk =
ẽk
q̃k

=
γek + (1− γ)ẽk−1

γqk + (1− γ)q̃k−1
, (33)

compare (30). In order to determine a value of γ one can proceed
by following the approach described in the previous paragraph. Or,
simulations or practical experiments have to be conducted, which will
be done by the authors in the near future.

When utilizing the R package forecast written by Hyndman
and Khandakar [20] a first insight into the performance of the various
tracking signals is given. In the next section a practical example is
investigated by applying the forecast package.

VI. AN EXAMPLE

The results of Section IV indicate that EWMA Q control charts
are attractive to control and to monitor a Software Development
Process (SDP) and its various phases or stages. In Section V forecasts
based on EWMA Q control charts and accuracy measures of such
forecasts were introduced. This section exemplifies that forecasts are
beneficial to control and to monitor an SDP, in this case the aggegrated
number of defects detected in a short-run test phase of the SDP, see
Florac and Carleton [10, pp. 150].

When viewing Figure 8 a tester considers himself to be confident
that the actual test process is under control.
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Fig. 8. Q Control chart of aggregated defects

But when applying an EWMA Q control chart, at least one out-
of-control event occurred, see Figure 9 and Figure 10, respectively.

The R package forecast developed by Hyndman and Khan-
dakar [20] implements the function ses for simple exponential
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Fig. 9. EWMA Q control chart of aggregrated defects
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Fig. 10. Modified FIR EWMA Q control chart of aggregated defects

smoothing and the function holt for Holt’s procedure [15]. The
output of both functions can be controlled by some parameters,
amongst others by the forecast horizon h. In this paper the forecast
horizon h is always set to h = 1, since it is a beneficial test strategy
to directly react to out-of-control events.

In order to apply the ses and holt functions to the number
of defects the corresponding Q-Statistic values are calculated, see
Table I. Recall that in view of (6), Q1(x1) and Q2(x2) are not defined.

TABLE I. Q-STATISTIC VALUES

[1] NA NA 0.7481477 2.0335408 0.2355839
[6] -0.4445491 0.4559483 1.7892421 -0.7438131 0.6884329
[11] -0.6677563 0.4852904 -0.1842182 0.6343398 -0.2298550
[16] 0.2133119 0.2073223 2.0780123 -0.0701442 0.6508527
[21] -0.8308747

In a first step, the functions ses and holt are applied to predict
the Q-Statistic value Q10(x10). The results are listed in Table II.

TABLE II. PREDICTING Q10(x10)

fnct. forecast Q10(x10) 80% CI 95% CI MASE
ses 0.581 0.688 [−0.66, 1.82] [−1.31, 2.48] 0.999
holt -0.096 0.688 [−1.26, 1.07] [−1.87, 1.68] 0.957

Since MASE < 1 in both cases, the accuracy of the forecasts
are better than those of the average naı̈ve forecasts. Furthermore, a
closer look at the summary function of the ses and holt forecasts
reveals that a trend cannot be detected.

When predicting Q18(x18) the holt function detects a trend
defined in (26). The trend parameter ν is equal to 0.1222. The results
of the ses and holt forecasts of Q18(x18) are listed in Table III.



TABLE III. PREDICTING Q18(x18)

fnct. forecast Q18(x18) 80% CI 95% CI MASE
ses 0.348 2.078 [−0.64, 1.33] [−1.16, 1.85] 1.000
holt 0.182 2.078 [−0.86, 1.22] [−1.41, 1.77] 1.131

Obviously, the accuracy of both forecasts is not better than that
of the average naı̈ve forecast.

Q-Statistic forecasts can be controlled and monitored by means
of control charts. The associated control limits can be calculated by
taking into account the standard deviation of the forecast errors ek.
The summary function of the ses and holt procedures lists the
standard deviation. The control limits are in general ±2 or ±3 times
the standard deviation. The Q-Statistic forecasts listed in Table II and
in Table III do not reveal an out-of-control forecast.

In view of (6) a forecast of the data point xk can readily be
determined:

xk = xk−1 +

√
k

k − 1
× sk−1 ×G−1

k−2

{
Φ

[
Qk(xk)

]}
, (34)

where G−1
k−2 denotes the inverse of the Student t cumulative distribu-

tion function with k − 2 degrees of freedom, and Φ the standard
normal cumulative distribution function. Thus, replacing the term
Qk(xk) in (34) with a corresponding Q-Statistic forecast results in a
forecast of xk. A forecast of the range of xk is calculated by replacing
the term Qk(xk) with the endpoints of the corresponding confidence
interval of 80% or 90% confidence level. For instance, in view of the
values listed in Table III one obtains:

TABLE IV. PREDICTING EVENT x18

fnct. forecast x18 x18 80% CI 95% CI
ses 24 36 [17, 31] [14, 35]
holt 23 36 [16, 30] [12, 35]

Suppose that the forecast xk has been calculated and the ”true”
xk has been observed. If the true xk does not lie in one of the
confidence intervals of the forecast xk, then an investigation why
this event occurred is appropriate in order to potentially decrease the
number of aggregated defects immediately.

VII. CONCLUSION

Traditional Shewhart control charts are a successfully applied
Statistical Process Control (SPC) tool for controlling and monitoring
the variation of long-run mass production processes. To ascertain
robust and valid control chart limits, a sufficiently large set of
observations drawn from a process under consideration is required.
Hence, Shewhart control charts cannot readily be adopted to the
Software Development Process (SDP), since the SDP does not provide
in general the needed large set of observations. As indicated in
this paper, Q control charts are a highly appropriate alternative to
Shewhart control charts in the SDP context, because they enable
early detection of nonrandom process behavior and the controlling
and monitoring of the SDP as a short-run process in real time. These
Q control chart properties originate from pre-defined, constant control
limits making the Phase I as part of classic Shewhart control charts
in order to stabilize the control chart limits redundant.

This paper focused on the performance of Q-Statistics based
EWMA control charts, inclusive the FIR adjustment enhancement,
and their forecasting feature and on the quality of the forecasts.
Although only limited experiments have been conducted, the results
are promising. So further practical experiments have to be conducted
in order to confirm the findings obtained so far.
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